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INTRODUCTION 

 

This report describes our work applying a multi-point statistics (MPS) method to assess potential recharge 
locations, in San Luis Obispo County, California, U.S.A. This report is accompanied by presentation 
material in pdf format; this pdf file is downloadable through this link. In this report, we refer to the content 
in the presentation using the page number of the presentation.   

The study area is located in San Luis Obispo County, California as shown in the location map (Page 2). 
Airborne electromagnetic (AEM) data were acquired in November 2019 with the SkyTEM 312 system. 
These AEM data were processed by Aarhus University to remove noisy data. The locations of resulting 
high-quality AEM data are shown as black lines in the location map (Page 2). Shown are areas where AEM 
data were omitted; these areas are close to transmission lines and vineyards. IGIS digitized 731drillers’ logs 
from wells within the study area; these are shown as red circles on Page 2. The AEM surveys were designed 
to fly as close as possible to accurately located wells with drillers’ logs so as to construct an accurate 
resistivity-to-sediment-type transform. The result was a total of 88 wells with drillers’ logs within 100 m 
of AEM data locations; the locations of these wells, treated as co-located with the AEM soundings, are 
presented on Page 2 as white open circles. Streams in the study area (e.g., the Estrella River) are shown as 
blue lines in the location map. During the week of the AEM survey, groundwater level measurements were 
made in 30 wells; their locations are shown on Page 2 as blue solid circles. 

An important question that we focused on in this study is: “What is the extent of the clay layer at the Estrella 
River?” Given that this clay layer can act as a hydraulic barrier to vertical groundwater flow, delineating 
the clay layer can provide information to guide decisions for recharge operations. To delineate the extent 
of the clay layer, we applied the MPS method, utilizing the AEM and well data. Our final goal was to obtain 
the distribution of sediment type, defined as coarse-grained-dominated and fine-grained-dominated, and 
referred to as coarse-dominated and fine-dominated, at the scale of a 3D grid with a uniform cell size of 
200 m × 200 m × 5 m. The horizontal dimensions of 200 m × 200 m was selected to match that used in in 
the local groundwater model (Sorensen et al., 2005). The vertical dimension of 5 m was a trade-off between 
vertical resolution of the well data, which ranged from 15 cm to 143 m (on average, 6 m), and that of the 
AEM data, about 2 m at the surface, increasing to ~40 m at 300 m depth. Uncertainty in the distribution of 
sediment type was displayed as the probability of coarse-dominated. 

As shown on Page 5, there were three key inputs to the specific form of the MPS methodology that we 
developed. These inputs were derived as profiles or models of sediment type from the AEM and well data 
and include: (1) a sediment-type starting probability model defined at the grid, derived from the AEM data; 
(2) sediment-type well profiles upscaled and classified from drillers’ logs; (3) a training image capturing 
the expected geologic patterns in the area. With these three inputs, MPS simulations were carried out to 
obtain multiple realizations of sediment-type models composed of two units: coarse-dominated and fine-
dominated. The obtained sediment-type models allowed us to address the hydrogeologic question as well 
as capturing the associated uncertainty.  

 

https://www.dropbox.com/s/dm4ylimi5kn3vc1/MPS%20SLO%20report.pdf?dl=0
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APPLICATION OF THE MPS METHOD 

In this section, we describe our workflow to derive inputs for the MPS simulations from the AEM and well 
data. Our workflow is composed of six steps: 
 

• Step 1: define the grid 
• Step 2: prepare the well data 

A: classify the well data as coarse/fine 
B:  prepare profiles of sediment-type from well data at the scale of grid (upscale to the grid)

  
• Step 3: derive 3D coarse-fraction (CF) models from AEM data at the scale of the grid 
• Step 4: construct a sediment-type starting probability model from the AEM-derived CF-models 
• Step 5: detect outliers in the sediment-type well profiles 
• Step 6: create a training image 

 
The flow chart of the workflow is shown on Pages 6-8. The unknown random variable that we seek is 
defined below in Equation 1 as 
 
𝑍𝑍 = �  1 , 𝐶𝐶𝐶𝐶 ≥ 0.5

0, 𝐶𝐶𝐶𝐶 < 0.5 ,                                                                                                                                         (1) 
 

where 𝑍𝑍=1 and 0 represent the two sediment types: coarse-dominated and fine-dominated, respectively; CF 
values less than 0.5 are determined to fine-dominated and those greater or equal than 0.5 are determined to 
be coarse-dominated. With MPS simulations, our aim is to obtain multiple realizations of MPS sediment-
type (coarse-dominated or fine-dominated) models at the scale of the grid: {𝑧𝑧13𝐷𝐷,𝑧𝑧23𝐷𝐷, … , 𝑧𝑧𝐿𝐿3𝐷𝐷}; here 𝐿𝐿 is the 
number of MPS sediment-type models.  

In Step 1, we defined the grid, shown on Page 4. Given that this was the grid of our MPS sediment-type 
model, the AEM and well data must be transformed into sediment type at the scale of the grid to provide  
input to an MPS simulation algorithm.  

In Step 2A, we prepared the well data to provide intervals of coarse/fine. For the classification of coarse/fine 
from the highly variable lithologic descriptions, we used a machine learning technique developed by 
Stanford researchers; a classifier was constructed using well data from regions in the Central Valley. This 
process was applied to all 731 drillers’ log, as illustrated on Page 10. The classification in terms of 
coarse/fine are at the well scale, and this will be used later in Step 3. In Step 2B, we prepared the sediment-
type from the well data at the scale of the grid. We first calculated a CF value defined in a grid cell from 
coarse/fine intervals of a well; this can be seen as a vertical upscaling procedure from the well scale to the 
grid scale as illustrated on Page 11. In addition, if there are multiple wells in a grid cell, we arithmetically 
averaged corresponding values of CF. This procedure resulted in a total of 539 CF well profiles (which can 
be provided to the agency) containing values of CF at the scale of the grid as shown on Page 12. Page 13 
shows a 3D view of these CF well profiles. Using equation (1) the 539 CF well profiles were converted to 
sediment-type well profiles as shown on Page 14. From the geostatistical analysis of the 𝑧𝑧wells we found 
that the percentage of coarse-dominated in the entire sediment-type well profiles is 36%; vertical and 
horizontal correlation lengths are 10-20 m and about 500 m, respectively. These sediment-type well profiles 
will be used in Step 5.  

In Step 3, we derived 3D CF models from the AEM data at the scale of the grid. This required three sub-
steps: Step 3A − AEM inversions, Step3B − Rock physics transform, and Step3C − Interpolation to the 3D 
grid. By applying AEM inversions to the AEM data, in Step 3A, we obtained a total of 2002 resistivity 
models imaging the subsurface structures as well as capturing the uncertainty. The mean of the resistivity 
models was selected as our primary resistivity model. For these AEM inversions, we used both the 
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commercial geophysics software, Aarhus workbench and the open-source geophysics software, SimPEG 
(Viezzoli et al., 2008; Cockett et al., 2015; Kang et al., 2019).  

In Step 3B, we transformed the obtained resistivity models into CF. For this transformation, we constructed 
a relationship between resistivity and CF using the methodology developed by Goebel and Knight (2020). 
This method has a two-step procedure. First by using 88 pairs of the co-located well data and AEM 
resistivity profiles from the primary resistivity model, we constructed resistivity distributions for the coarse 
and fine using the method from Knight et al. (2018). Given the impact of water content on resistivity, when 
building these resistivity distributions for the coarse and fine, we distinguished regions above the water 
table from those below the water table. The water table (or top of the saturated zone more accurately) was 
estimated from the AEM data and water levels using the methodology developed by Dewar and Knight 
(2020). From these resistivity distributions, we randomly sampled resistivity values for a suite of values of 
CF and obtained a relationship between resistivity and CF.  

Using the developed resistivity-CF relationship, we transformed 2002 resistivity models to 2002 CF models. 
The mean of the CF models displaying the spatial variation of coarse- and fine-grained materials is shown 
in Page 17. Standard deviation of the CF models which displays the uncertainty is shown on Page 18; a 
darker color indicates a low level of uncertainty. For our rock physics transform we neglected the impact 
of salinity, given our understanding that there is little variability in TDS values in the study area. 

The mean of CF models was defined at the scale of the AEM, and therefore needed to be interpolated over 
to the 3D grid used in MPS simulations. When interpolating the mean of CF models composed of vertical 
profiles of CF to the 3D grid, we took into account increasing lateral sampling volume of a vertical profile 
of CF from AEM as illustrated on Page 17. In addition, we used the standard deviation shown on Page 18 
as interpolation weights to put higher emphasis on cells of the primary CF model having a low level of 
uncertainty (i.e., low standard deviation). With this interpolation process, we obtained a total of 1001 3D 
CF models as illustrated on left-hand side of Page 19; the mean of the obtained 3D CF model was calculated 
and shown on the right-hand side of Page 19.  

In Step 4, we constructed a sediment-type starting probability model using the obtained 3D CF models in 
the previous step. For each of 1001 3D CF models, we classified their CF values into either coarse-
dominated or fine-dominated using equation (1) as shown on right-hand side of Page 20. This procedure 
results in 1001 sediment-type models from AEM, from which we calculated the probability model of 
coarse-dominated as shown on Page 21, which displays the uncertainty of subsurface sediment-type; blue 
and red colors indicate a low level of uncertainty whereas a yellow color indicates a high level of uncertainty. 
The probability model of coarse-dominated is referred to as the starting probability model of coarse-
dominated. The probability model of fine-dominated was obtained by subtracting the probability model of 
coarse-dominated from one.  

In Step 5, we randomized the selection process of sediment-type well profiles to be used as hard data. This 
was to take into account the quality of drillers’ logs which varied for many reasons (e.g., drilling method, 
care taken in preparing drillers’ log); the quality of the drillers’ logs had not been classified. First, we 
selected a portion of sediment-type well profiles which did not have any neighboring well profiles within 
500 m separation distance; a total of 99 well profiles were selected. A 500 m separation distance was used 
based on the horizontal correlation length of the sediment-type wells. Second, from the other 440 well 
profiles, we sampled well profiles using an iterative, random-sampling technique and removed redundant 
well profiles. By repeating this procedure 100 times, we obtained 100 sets of sediment-type well profiles. 
About 280 well profiles were selected from 440 well profiles for each set. This resulted in the use of roughly 
370 well profiles being included in each set of sediment-type well profiles used as hard well data in MPS 
simulations. We used all 539 sediment-type well profiles throughout 100 MPS simulations, but for each 
MPS simulation a different set of randomly sampled sediment-type well profiles was used.  
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The development of a training image, Step 6, required an understanding of the large-scale patterns in 
sediment type in the study area. We approached this by investigating the mean 3D CF model from the AEM 
data, which was obtained in Step 3. On Page 25, we show the mean 3D CF model and the interpreted surface 
(yellow) of the base of Paso Robles Formation (Madsen et al., 2020). For visualizing the mean 3D CF 
model, we omitted grid cells laterally separated by greater than 500 m from the vertical profiles of CF 
shown on Page 17 . Given that our interest was in the Alluvium and Paso Robles Formation, we only used 
cells above the base of the Paso Robles Formation. Using the mean 3D CF model, we calculated the vertical 
integral for each lateral cell on a 2D plane, and generated 2D maps visualizing the vertical CF from AEM, 
as shown on Pages 26-29. When computing the vertical integral of CF values, we used four different 
intervals: top to 20 m, 20 m to 50 m, 50 m to the base of the Paso Robles Formation, top to the base of the 
Paso Robles Formation.  On Page 26, we show a 2D CF map at an interval from the top to 20 m. This map 
delineates the distribution of coarse- and fine-grained materials for the Alluvium and the top part of the 
Paso Robles Formation. The study area is dominated by coarse-grained materials at this shallow interval. 
In the northeastern region, we see lens-like features in south-southeast (SSE) direction (see black arrows 
on Page 26). On Page 27, we show the 2D map at the interval from 20 m to 50 m. What we see here is 
mostly coarse-grained and fine-grained materials of the Paso Robles Formation. Compared to the top-to-
20-m interval, this interval contains a higher percentage of fine-grained materials. In addition, we also 
identify lens-like features oriented in an eastward direction (see blue arrows on Page 27) in the western 
region and in a north-northwest (NNW) direction in the south eastern region (see red arrows on Page 27). 
At a deeper interval, 50 m to the base of the Paso Robles Formation shown on Page 28, we see an apparent 
smoothing in the level of spatial heterogeneity in the CF map, compared to the upper intervals (e.g., Page 
27); this is related to the decreasing resolution of the AEM data with depth. On Page 29, we show a CF 
map from the interval extending from the top to the base of the Paso Robles Formation which integrates all 
depth intervals of interest. In general, below the Estrella River, we see more fine-grained materials in the 
western part of the study area than in the eastern part. We also see regions containing coarse-grained 
materials in the northeast and the southeast.  

The large-scale trends observed in the 2D CF maps, were consistent with the geologic history of paleo-
drainages forming the Paso Robles Formation. Our understanding of this history is based on conversations 
with Paul Sorensen, hydrogeologist with GSI Water Solutions. Cenozoic uplift generated sediments 
deposition in the basin, forming the Paso Robles Formation occurring in the early Pliocene. The uplift of 
the Santa Lucia Range, located northwest of the study area, resulted in the eastward deposition of marine 
sediments (see blue arrows in Page 27), while the uplift of the La Panza Range, located on the southeast 
side of the study area, resulted in the deposition of sediments derived from sandstone and granitic materials 
in the NNW direction (see red arrows in Page 27). We see more fine-grained materials in the west than in 
the east in the 2D CF map for the interval from the top to the base of the Paso Robles Formation (shown on 
Page 29). Near the end of the Pliocene, uplift resulted in the formation of Temblor Range, and the 
subsequent sediment deposition occurred in the SSE direction (see black arrows in Page 26). We interpreted 
the coarse-grained materials in the northeast as related to this depositional event. When the Paso Robles 
Formation was created, it was likely deposited as channel deposits, but due to significant subsequent 
deformation the channel shapes were not preserved.  Therefore, our conceptual geologic model is the 
presence of sand lenses embedded in a clay background.  

Using the above understanding of the depositional environment, we created a training image. To simulate 
the shape of the lenses, we used a half-ellipsoid as shown on Page 33. A table on Page 33 summarizes 
parameters used to define our training image. The proportion of coarse-dominated was set to 0.36 based 
upon the proportion of coarse-dominated in sediment-type well profiles. The range for the thickness of the 
ellipsoid, representing a lens, was determined by variogram analysis of the sediment-type well profiles. The 
ranges for the width, length, and direction of the ellipsoid were determined based upon observations of (a) 
the 2D CF maps, (b) Google Earth images showing channels along the Salinas River, and (c) our geologic 
knowledge about the deposition history. We used a utility code, tiGenerator, included in an open-source 
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geostatistical software package, SGeMS (Remy et al., 2009),  to construct the training image shown on Page 
34. Given the history of paleo-drainage originating from the three different ranges: Santa Lucia, La Panza, 
and Temblor, we delineated three different regions, aligning the major axis of the coarse-grained lenses 
within each region with the direction of deposition. As shown on the right-hand side of Page 34, we 
distinguished three different regions: west, southeast, and northeast. We correspondingly assigned east, 
NNW, and SSW directions for the orientation of the major axes. Corresponding azimuthal angles are 90, -
20, and 20 degrees; the azimuthal angle is defined as 0 in the northward direction, increasing in the 
clockwise direction.  

All three inputs for the MPS simulations were developed as illustrated on Page 35, and were used to 
generate 200 MPS sediment-type models. For our MPS simulations we used a SNEISM algorithm, which 
is included in SGeMS (Remy et al., 2009). For each MPS simulation, we used the same sediment-type 
starting probability model and training image, but a different set of sediment-type well profiles as illustrated 
in Step 5. The target percentage of the coarse-dominated was set to 36% based up on the percentage of 
coarse-dominated in the sediment-type well profiles, which is an input parameter of the MPS simulation; 
other parameters of the algorithm were set to default values. Each MPS simulation was performed in the 
entire 3D grid; we then extracted the cells below the base of the Paso Robles Formation.  

Shown on the left-hand side of Page 36, is a 3D view of an output MPS sediment-type model. On the right-
hand side of Page 36, is a 3D view of the three different regions to which we assigned different orientation 
directions for the sand lenses. We see the directional trends input into the MPS simulation. The starting 
probability model of coarse-dominated, on the right hand side of Page 37, shows that the large-scale trend 
in this model is captured in the MPS sediment-type model. On Page 38, we show two output MPS sediment-
type models. Although we have shown only two MPS sediment-type models, we captured the uncertainty 
by obtaining 198 more models. This ensemble of MPS sediment-type models was used in the later section 
to assess potential recharge areas.  

 

COMPARISON WITH GEOLOGIC SECTIONS 

From the application of the MPS method, we obtained the starting probability model as well as 100 
realizations of the MPS sediment-type model. In this section, we compare the starting probability model of 
coarse-dominated and MPS sediment-type models with geologic cross-sections from the study area: A-A’, 
B-B’, and E-E’, marked as black lines on Page 40. Pages 41-57 show our comparison, with red and blue 
shaded colors indicating the coarse-dominated and fine-dominated and vertical cylinders representing the 
sediment-type well profiles. 3D grid cells below the base of the Paso Robles Formation are shaded with a 
block pattern. 

 

ASSESSING POTENTIAL RECHARGE AREAS 

By using all 200 MPS sediment-type models obtained from the MPS simulations, we examined the extent 
of the clay layer at the Estrella River. Local agencies are interest in the potential for recharge along the 
Estrella River. The presence of the clay layer could impede water infiltrating from the surface to aquifers 
in the Paso Robles Formation, so there is a desire to identify locations where the clay layer is thin or absent. 

Shown on the left-hand side of Page 59 is an E-W vertical section of the starting probability model of 
coarse-dominated. The plan view map showing the location of the vertical section is shown on the right-
hand side of Page 59 as a red line; the black and blue lines in this figure indicate the location of AEM 
soundings and the Estrella River, respectively. We see thin coarse-dominated materials in the top 10-20 m, 
and fine-dominated materials below (~50 m-thick), which correspond to the clay layer. Below the clay layer, 
there is a thick coarse-dominated layer interpreted as an aquifer unit in the Paso Robles Formation. The 
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clay layer, identified at the Estrella River, is extensive within the study area. The red surface shown on Page 
60 indicates the base of the clay layer which we interpreted using the starting probability model of coarse-
dominated. Given the extensive nature of the clay layer, we extended our region of interest to the entire 
study area.  

Our objective was to obtain many 2D maps of the percentage of coarse-dominated displaying regions where 
the clay layer is absent or thinning. A 2D map of percent coarse-dominated is generated by computing the 
vertical percentage of coarse-dominated from the base of the clay layer to the surface using an MPS 
sediment-type model. This process was repeated for all 200 MPS sediment-type models resulting in 200 
2D maps of percent coarse-dominated. The obtained 2D maps of percent coarse-dominated provide useful 
information for locating potential recharge activities in the study area. Three example maps of percent 
coarse-dominated are shown on Pages 62 to 64; here, the grey shaded area indicates that the underlying 
units of the Paso Robles Formation are exposed at the surface. The mean of the percent coarse-dominated 
maps is shown on left-hand side of Page 65 displaying our best estimate of percent coarse-dominated, 
vertically integrated from the base of the clay layer to the surface. The standard deviation of the 2D maps 
of percent coarse-dominated displays the uncertainty; the darker color indicates a low level of uncertainty. 
On average, the standard deviation is about 18%, which we interpret as a relatively low level of uncertainty.   

On the left-hand side of Page 66, we show the 40% contour from the mean of the percent coarse-dominated 
maps as black lines; we also show other streams in the study area as blue dashed lines. Along the Estrella 
River, we see relatively low values of percent coarse-dominated (<40%) except for small zones on the 
eastern side of the river. We interpret there being low recharge potential along the river in the western half 
of the figure on the left and higher potential in the eastern half. In the northeast side of the river, and basin 
in general, we see low values of percent coarse-dominated (~10%) except for a few small zones as shown 
on Page 67. In contrast, as shown on Page 68, along the Huer Huero Creek and Shedo Canyon, we see 
relatively high values of percent coarse-dominated (>40%). We interpret there being high recharge potential 
along the Huer Huero Creek and Shedo Canyon. Finally, the 2D map of percent coarse-dominated that we 
provided is not likely to be capturing spatial variation in the soil in top 30 cm, so we recommend integrating 
other soil maps with the percent coarse-dominated map when assessing potential recharge locations in the 
study area.  

INTERACTIVE VISUALIZATION OF RESULTS 

To facilitate interaction between Stanford researchers and those involved with groundwater management 
in San Luis Obispo County, we have provided the results of our study with a project file that can be viewed 
with a leapfrog viewer. This viewer is freely available at the leapfrog viewer website: 
https://my.seequent.com/releases/leapfrog-viewer/latest; setting up an ID is required to download the 
viewer. The project file is available through this link. 

The project file includes:  

1. Starting probability of coarse-dominated (3D grid) 
2. An example of an output MPS-sediment type model (3D grid) 
3. Sediment-type wells (vertical profiles) 
4. Topographic surface (surface) 
5. Base of the clay layer (surface) 
6. Geologic sections (vertical sections) including: A-A’, B-B’, E-E’ 
7. The 2D CF map from top to the base of the Paso Robles Formation 
8. Mean of percent coarse-dominated maps (vertical percentage of coarse-dominated from the base of 

the clay layer to the surface) 
9. TDS data compiled from Geotracker (colored points; 155 (blue) -1000 (red)) 

https://my.seequent.com/releases/leapfrog-viewer/latest
https://www.dropbox.com/s/7iach8pk5w1j6fc/for-slo-county.lfview?dl=0
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Location map

2



Question

What is the lateral extent of the clay layer at the Estrella River? 

"The nature of the near-surface sediments along the Estrella River and if/how they 

transition to coarser materials away from the river to the northeast. This issue has two 

potentially significant benefits: 1) better understanding of how surface water in the Estrella 

River recharges the underlying Paso Robles Formation for evaluation of potential recharge-

related areas, and 2) potentially focusing on active surface infiltration projects (recharge 

projects) on the northeast flank of the river and basin, rather than focusing on the river 

itself, which appears to me to be a poor location for recharge projects.” (from Paul)
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Our final model is sediment type

4

22 km

660 m

28 km

We define sediment type on this grid: 

3D grid information 

- 200 m x 200 m x 5 m cell

- # of cells = 110 x 142 x 132 = ~ 2M

Why 200 m x 200 m x 5 m cell?

- horizontal: size of the basin groundwater model grid

- vertical: trade-off resolution between AEM and well

Sediment type (Z= 0 or 1)

Z=1 means coarse-dominated

Z=0 means fine-dominated

Distribution of coarse-grained (sand)-dominated and fine-grained (clay)-dominated.

Will be referred to as coarse-dominated and fine-dominated

Uncertainty is displayed as probability of coarse-dominated



Multi-point statistics (MPS) method

Training image 

(geologic patterns)

Sediment-type starting probability 

model from AEM
Hard well data

Find multiple sediment type models 

(coarse-dominated /fine-dominated) 

satisfying all three inputs
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Sediment-type starting probability 

model from AEM

Step 1: define the grid

2A: classify the well data as coarse/fine

2B: prepare the sediment type from well 

data at the scale of grid (upscale to grid)  

Step 2: prepare the well data

CF: coarse fraction

MPS: multi-point statistics

Workflow
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Step 3: derive 3D CF models from AEM 

data at the scale of the grid 

Step 4: construct a sediment-type 

starting probability model



Sediment-type starting probability 

model from AEM

Step 1: define the grid

2A: classify the well data as coarse/fine

2B: prepare the sediment type from well 

data at the scale of grid (upscale to grid)  

Step 2: prepare the well data

Step 3: derive 3D CF models from AEM 

data at the scale of the grid 

Step 4: construct a sediment-type 

starting probability model

CF: coarse fraction

MPS: multi-point statistics

Workflow

Hard well data

Step 5: randomize selection 

of sediment-type well profiles
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Sediment-type starting probability 

model from AEM

Step 1: define the grid

2A: classify the well data as coarse/fine

2B: prepare the sediment type from well 

data at the scale of grid (upscale to grid)  

Step 2: prepare the well data

Step 3: derive 3D CF models from AEM 

data at the scale of the grid 

Step 4: construct a sediment-type 

starting probability model

CF: coarse fraction

MPS: multi-point statistics

Workflow

Hard well data

Step 5: randomize selection 

of sediment-type well profiles

Training image 

Step 6: create a training image
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Step2: Prepare the well data

Start with 731 drillers’ log from IGIS

• Quality ranking with locational 

uncertainty

• Quality 1: < 50 m 

• Quality 2: 50-100 m 

• Quality 3: 100-150 m

Use all of the wells.
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Step2A: classify the well data as coarse/fine

10

mostly coarse

mostly fine

Starting information – the 

descriptions from a driller’s log

(depth) interval

CLASSIFY*

Well SCALE Well SCALE

COARSE

FINE

A classified driller’s log

COARSE

FINE

* All intervals that are mostly coarse are classified as coarse; all 

intervals that are mostly fine are classified as fine.



Step2B: prepare the sediment-type from well data at scale of grid
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COARSE

FINE

A classified driller’s log

COARSE

FINE

0 <= CF <= 1

CF

0

1

1

0

UPSCALE

Well SCALE VERTICAL GRID SCALE

of final model

5m

First, vertical upscaling to coarse fraction  (CF)



Step2B: prepare the sediment-type from well data at scale of grid
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200 m

well location

Average CF if multiple wells are in a cell 

(left with 539 CF well profiles)

Wells outside of the grid are omitted for modeling.

Total 539 CF well profiles at the scale 

of the grid

Upscaling coarse fraction to the lateral 

dimension of the model cells



Step2B: prepare the sediment-type from well data at scale of grid
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Coarse-fraction well profiles

GRID SCALE

CF >= 0.5 is coarse-dominated 

CF < 0.5 is fine-dominated



Step2B: prepare the sediment-type from well data at scale of grid
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Sediment-type well profiles

GRID SCALE

Percentage of coarse-dominated: 36%

From variogram analysis:

- Vertical correlation length: 10-20 m

- Horizontal correlation length: ~500 m



Sediment-type starting probability 

model from AEM

Step 1: define the grid

2A: classify the well data as coarse/fine

2B: prepare the sediment type from well 

data at the scale of grid (upscale to grid)  

Step 2: prepare the well data

CF: coarse fraction

MPS: multi-point statistics

Workflow
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Step 3: derive 3D CF models from AEM 

data at the scale of the grid 

Step 4: construct a sediment-type 

starting probability model



Step3: derive 3D CF models from AEM data at the scale of grid 

• Step3A: AEM inversions
Invert AEM data, and obtain many resistivity models

Select mean resistivity model as our primary resistivity model

• Step3B: Rock physics transform
Use the co-located resistivity profiles (from the primary resistivity model and 
well data to construct relationship between resistivity and CF)

Transform all resistivity models to CF models

• Step3C: Interpolation to the 3D grid

16

AEM SCALE

GRID SCALE

AEM SCALE



Displaying the mean values (in each cell) of 2002 CF models
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SHOW mean CF model / STD

The AEM sampling volume is the volume of the subsurface that contributes to the sounding.



Standard deviation of 2002 CF models
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SHOW mean CF model / STD

High

uncertainty

Low

uncertainty



Obtain many 3D CF models from AEM
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Mean of 3D CF models 3D CF models 



Step4: Construct a starting sediment-type probability model

20

3D CF models 3D sediment-type models

CF >= 0.5 is coarse-dominated 

CF < 0.5 is fine-dominated
(above is Equation 1 in accompanying report)



Step4: Construct a starting sediment-type probability model
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3D sediment-type models Probability model of coarse-dominated



Sediment-type starting probability 

model from AEM

Step 1: define the grid

2A: classify the well data as coarse/fine

2B: prepare the sediment type from well 

data at the scale of grid (upscale to grid)  

Step 2: prepare the well data

Step 3: derive 3D CF models from AEM 

data at the scale of the grid 

Step 4: construct a sediment-type 

starting probability model

CF: coarse fraction

MPS: multi-point statistics

Workflow

Hard well data

Step 5: randomize selection 

of sediment-type well profiles
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Step5: Randomize selection sediment-type well profiles

• Quality of drillers’ logs varies due to many reasons
Drilling method

Care taken in preparing drillers’ logs

Human errors in the digitization process

• There has been no classification of the quality of the drillers’ logs, other than to 
rank in terms of location accuracy.

• We therefore randomized this selection process and generated many sets of 
sediment-type wells.

• For each MPS simulation we used a different set of sediment-type well profiles.

• As a result, we used all sediment-type well profiles, but in a randomized fashion.
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Sediment-type starting probability 

model from AEM

Step 1: define the grid

2A: classify the well data as coarse/fine

2B: prepare the sediment type from well 

data at the scale of grid (upscale to grid)  

Step 2: prepare the well data

Step 3: derive 3D CF models from AEM 

data at the scale of the grid 

Step 4: construct a sediment-type 

starting probability model

CF: coarse fraction

MPS: multi-point statistics

Workflow

Hard well data

Step 5: randomize selection 

of sediment-type well profiles

Training image 

Step 6: create a training image
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Mean of 3D CF models from AEM with Paso Robles Fm.

Average the 3D coarse fraction in vertical 

direction and obtain a 2D map
25

Base of the Paso Robles 

Formation (from Ramboll)

Color bar



Vertically integrated CF map from the AEM data
(within Paso Robles Fm.)
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Estrella River

Depth slices:

Top to 20 m

20 m to 50 m

50 m to base of Paso Robles Fm.

Top to base of Paso Robles Fm.

Mostly coarse Alluvium



Vertically integrated CF map from the AEM data
(within Paso Robles Fm.)
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Estrella River

Depth slices:

Top to 20 m

20 m to 50 m

50 m to base of Paso Robles Fm.

Top to base of Paso Robles Fm.

Much finer Paso Robles Fm.



Vertically integrated CF map from the AEM data
(within Paso Robles Fm.)
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Estrella River

Depth slices:

Top to 20 m

20 m to 50 m

50 m to base of Paso Robles Fm.

Top to base of Paso Robles Fm.



Vertically integrated CF map from the AEM data
(within Paso Robles Fm.)
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Estrella River

Depth slices:

Top to 20 m

20 m to 50 m

50 m to base of Paso Robles Fm.

Top to base of Paso Robles Fm.



Paleo drainage forming Paso Robles Fm. 

Santa Lucia Range

- Cenozoic uplift

- Deposition in early Pliocene

- Erosion & deposition of 

marine sediments

- Eastward channel direction

La Panza Range

- Cenozoic uplift

- Deposition in early Pliocene

- Erosion & deposition of sandstone and 

granitic materials

- North-northwestward channel direction
30



Paleo drainage forming Paso Robles Fm. 

Santa Lucia Range

- Cenozoic uplift

- Deposition in early Pliocene

- Erosion & deposition of 

marine sediments

- Eastward channel direction

Temblor Range

- Pliocene (near the end) uplift

- South-southwestward channel direction

La Panza Range

- Cenozoic uplift

- Deposition in early Pliocene

- Erosion & deposition of sandstone and 

granitic materials

- North-northwestward channel direction
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Paleo drainage forming Paso Robles Fm. 

Santa Lucia Range

- Cenozoic uplift

- Deposition in early Pliocene

- Erosion & deposition of 

marine sediments

- Eastward channel direction

Originally channel deposits 

but significant deformation, so 

channel shape not preserved. 

Represented as sand lenses 

in a clay background.

Temblor Range

- Pliocene (near the end) uplift

- South-southwestward channel direction

La Panza Range

- Cenozoic uplift

- Deposition in early Pliocene

- Erosion & deposition of sandstone and 

granitic materials

- North-northwestward channel direction
32



10 km
10 km

150 m

S

N
W

E

• Conceptual model

- Sand lenses embedded in a clay background

- Percentage of coarse-dominated is 36% 

(from the sediment-type well profiles)

• We use half-ellipsoids to emulate lenses

• Sand lens information

Step6B: Create the Training Image

Training Image

Length

Thickness

Width

Range Distribution type Source

Thickness 10-20 m Uniform Wells (variogram)

Width 0.4-0.6 km Uniform 1) The 2D CF maps

2) Observation from channels 

in the Salinas River
Length 1.2-4 km Uniform

Direction (azimuth) -20-20 Triangular
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• Conceptual model
- sand/gravel lenses embedded in the clay/silt 

background

• Direction of the lenses: 
- Western region: Eastward (90 degree)

- Southeast region: North-northwestward (-20 degree)

- Northeast region: South-southeastward (20 degree)

Step6B: Create the Training Image

West region

Northeast region

Southeast region
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Applying Multi-point statistics (MPS) method to the SLO data

Training images

(geologic patterns)

Starting sediment-type 

probability model from AEM
Hard well data

35

Resistivity models from AEM

CF models from AEM

3D CF models from AEM

Randomized selection of 𝑧wells

Classified well data

(coarse/fine)



Output MPS sediment-type model

MPS sediment-type model 1 Region code
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Output MPS sediment-type model
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MPS sediment-type model 1 Probability model of coarse-dominated from AEM



Two MPS sediment-type models
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MPS sediment-type model 2 MPS sediment-type model2MPS sediment-type model 1



Obtain multiple realizations capturing uncertainty

….

Training image 

(geologic patterns)

Sediment-type starting probability 

model from AEM
Hard well data

100 MPS sediment-type models
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Comparison with 
geologic sections
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A-A’



A-A’

41

Others

Paso Robles Fm.

Alluvium

~20 km

Paso Robles Fm.

~450 m
300m



A-A’
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Alluvium

~20 km

Paso Robles Fm.

Sand/gravel zone

300m

Others



Probability model of coarse-dominated from AEM at A-A’
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Paso Robles Fm.

Alluvium

~20 km

Sand/gravel zone

300m

Others



MPS sediment-type model 1 at A-A’
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Others

Alluvium

~20 km

300m

Paso Robles Fm.

Sand/gravel zone



MPS sediment-type model 2 at A-A’
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Others

Alluvium

~20 km

Paso Robles Fm.

Sand/gravel zone

300m



Plan map for geologic sections
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B-B’



B-B’
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Alluvium
Sand/gravel zone

~13 km

~300 m



B-B’
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Alluvium
Sand/gravel zone

~13 km

~300 m



Probability model of coarse-dominated from AEM at B-B’
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Alluvium
Sand/gravel zone

~13 km

~300 m



MPS sediment-type model 1 at B-B’
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Alluvium
Sand/gravel zone

~13 km

~300 m



MPS sediment-type model 2 at B-B’
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Alluvium
Sand/gravel zone

~13 km

~300 m



Plan map for geologic sections
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E-E’



E-E’
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Others
Paso Robles Fm.

Alluvium

~26 km

300 m



E-E’
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Others
Paso Robles Fm.

Alluvium

300 m

~26 km



Probability model of coarse-dominated from AEM at E-E’
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Others
Paso Robles Fm.

Alluvium

300 m

~26 km



MPS sediment-type model 1 at B-B’
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Others
Paso Robles Fm.

Alluvium

300 m

~26 km



MPS sediment-type model 2 at B-B’
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Others
Paso Robles Fm.

Alluvium

300 m

~26 km



Answering question
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#1 What is the extent of the clay layer at the Estrella River? 

"The nature of the near-surface sediments along the Estrella River and if/how they transition to coarser 
materials away from the river to the northeast. This issue has two potentially significant benefits: 1) better 
understanding of how surface water in Estrella River recharges the underlying Paso Robles Formation for 
evaluation of potential recharge-related areas, and 2) potentially focusing on active surface infiltration projects 
(recharge projects) on the northeast flank of the river and basin, rather than focusing on the river itself, which 
appears to me to be a poor location for recharge projects.” (from Paul)

Clay layer
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300m

Estrella River

4 km



Define the base of the clay layer
(using the probability of coarse-dominated from AEM)
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300m

Estrella River

4 km

Base of the clay layer



Compute the vertical percentage of coarse-dominated 
(above the base of the clay layer)
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In order to investigate vertical connectivity

300m

Estrella River

4 km

Base of the clay layer
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2D map of percent coarse-dominated

No data

Compute the vertical percentage of coarse-dominated 
(above the base of the clay layer)
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2D map of percent coarse-dominated

No data

Compute the vertical percentage of coarse-dominated 
(above the base of the clay layer)
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2D map of percent coarse-dominated

Compute the vertical percentage of coarse-dominated 
(above the base of the clay layer)

No data



From 100 2D maps of percent coarse-dominated
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High 

Uncertainty

Low 

Uncertainty

No data

Standard deviation of percent coarse-dominated maps

No data
No data

Mean of percent coarse-dominated 

maps



So, what can we tell?
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Along the Estrella River, there are relatively low 

values of percent coarse-dominated (<40%) 

except for small zones on the east side of the 

river. 

We interpret there being low recharge potential 

along the river in the western half of the figure 

on the left and higher potential in the eastern 

half.

Mean of percent coarse-dominated 

maps

No data



So, what can we tell?
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In the northeast side of the river and basin in 

general, we see low values of percent coarse-

dominated (~10%) except for a few small zones. 

Mean of percent coarse-dominated 

maps



So, what can we tell?

68

Mean of % coarse-dominated maps
In contrast, along the Huer Huero Creek and 

Shedo Canyon, we see relatively high values of 

percent coarse-dominated (>40%).

We interpret there being high recharge potential 

along the Huer Huero Creek and Shedo

Canyon. 

Finally, the 2D map of percent coarse-

dominated that we provided is not likely to be 

capturing spatial variation in the soil in top 30 

cm, so we recommend integrating other soil 

maps with our percent coarse-dominated map 

when assessing potential recharge locations in 

the study area. 

Huer Huero

Creek

Shedo Canyon 
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