Exhibit A 2009 Update Avila Circulation Study On November 14,1989 the Board of Supervisors approved the Avila Circulation Study and adopted a Resolution imposing road improvement fees on new development under the provisions of Ordinance 2379. The Board adopted the most recent update of the Avila Circulation Study on December 16, 2008. ### **Building Activity** Since the last Update, one commercial building permit was issued, and there were no other residential permits issued. The reporting period of this update is from July 1, 2008 through June 30, 2009. ### **Road Improvement Fund** During the 2008/2009 fiscal year the fund received approximately \$5,944.00 in new fees and \$6,265 in interest. At the end of the 2008/200 fiscal year there was approximately \$363,320 in the account. ### **Fee Appeals** There were no Road Improvement Fee appeals during the last fiscal year. ### TRANSPORTATION IMPROVEMENTS The Avila Circulation Study contains a list of recommended improvements for several modes of transportation in the community as well as projects from the adopted Capital Improvement Program that are funded through Road Improvement Fees. ### PROJECTS UNDER DEVELOPMENT ### Installation of a Traffic Signal at Avila Beach Drive and First Street \$300,000 The project will install a traffic signal, a crosswalk, and streetlights at this intersection. The number of pedestrians and bicyclists is anticipated to increase with the extension of the Bob Jones Bike Trail and the signal is needed to accommodate the crossing of this traffic by including a dedicated bicycle and pedestrian phase. With the completion of the traffic signal, the Public Works Department intends to remove the current pedestrian crossing at Avila Beach Drive and San Miguel Street since the signal presents a more optimal place for pedestrian traffic to cross. Currently the traffic signal is designed and ready to proceed with construction. In addition, the Parks Department is working with the adjacent property owners on coordinating the extension of the Bob Jones Trail to this location. The intent of the County is to coordinate the construction of both projects to minimize the impact to the community. Construction is scheduled for the spring of 2010. This is a project that is identified in the Circulation Study as payable with impact fees however there is funding for the signal from PG&E fees that will cover most of the construction costs. ### **Bob Jones Bikeway Extension** \$375,000 The project consists of the relocation of the entrance/exit of the Bob Jones Bikeway from its current location on San Miguel Street to a new location on First Street. This project is being developed by the County Parks Department, and will be coordinated with the installation of the traffic signal at Avila Brach Drive and First Street. Construction is scheduled for the spring of 2010. Funding is from Unocal Funds. ### San Luis Bay Drive and US 101 Project Study Report \$250,000 The multi-year project will prepare a Project Study Report to evaluate long-term solutions to relieve projected congestion issues at the interchange and adjacent intersections at buildout. This will include a detailed analysis of the interaction of the intersection of San Luis Bay Drive and US 101 and Ontario Road. This report will also refine const estimates and identify potential environmental and right-of-way impacts. This report is necessary in order to achieve agreement from CalTrans and other stakeholders about changes to the operation of the interchange The report is anticipated to be started in 2010 Funding will be from the Roadway Impact Fees. ### Pedestrian Walkway - Port San Luis to Unocal Pier (Study Only) \$300,000 The report will identify corridor options for the Avila to Harford Pier Path. The multi-use path would extend from First Street to Harford Pier. In addition, the project will include an analysis of options for crossing San Luis Obispo Creek. The lead agency for this project is the County Parks Department and the available funds should bring the project pre-construction. There is currently a RFP out for this project. Funding will be from PG&E Steam Generator Mitigation Funds. ### Study Intersection Operations at See Canyon Road \$10,000 The community has continuing concerns with the operation of the intersection of San Luis Bay Drive and See Canyon Road/ Bellevue-Santa Fe Charter School Driveway. County Staff will be preparing a report detailing the current operation of the intersection and exploring the available options to modify the intersection. This report will be completed in 2010. Funding sources are still being identified. ### **ROAD IMPROVEMENT FEES** Since the last update the 5-year update has been completed and recommends a fee of \$4,146 per peek hour trip generated. This is a 55% increase over the current fee of \$2,673. This increase is due to the reduction in estimated trips associated with the completion of several developments at lower densities than allowed in the Avila General Plan. As well as increases in project development and construction cost estimates over the last three years. ### Attachments Figure 1 - Map of Study Area Table A - Capital Improvement Projects Table Table B - Road Impact Fee Fund Balance Avila Valley Circulation Study – January 2009 **AVILA ROAD FEE AREA** | | Av | ila Capita | Improven | nent Progra | ım | | | | |------------|--|--------------|--------------------------|------------------------|--------------------|---------------------|--|-----------------------| | | | 2 | 2009 Updat | e | | | | | | | | Cost | | Less | | Funding | | Expected Construction | | Priority | Project | Estimate | Existing
Deficiencies | Other
Sources | Through
Traffic | From Impact
Fees | Other Funding | Commencement (1) | | San Luis I | Bay Drive | | 1 | | | 1 | | | | | San Luis Creek Bridge Replacement | \$6,935,420 | | \$5,418,106 | | \$1,517,314 | HBRR/RSHA/TEA | Complete | | 10 | Widening for Bike Lanes | \$822,824 | | \$822,824 | | \$0 | APCD (potential) | 2025 | | 2 | Study Intersection Operations at See Canyon Road | \$10,000 | | \$10,000 | | \$0 | To Be Determined | 2010 | | Avila Bea | ch Drive | | 1 | | | 1 | | | | 11 | Widening for Bike Lanes | \$2,250,838 | | \$2,250,838 | | \$0 | APCD (potential) | 2020 | | 9 | Signal - San Miguel Street and Intersection Improvements | \$240,500 | | | | \$240,500 | | 2025 | | 12 | Signal - San Luis Street and Intersection Improvements | \$227,500 | | | | \$227,500 | | 2025 | | 1 | Signal - First Street and Intersection Improvements | \$260,000 | | | | \$260,000 | | 2010 | | 3 | Pedestrian Walkway - Port San Luis to Unocal Pier (Up to PS&E) | \$300,000 | | \$300,000 | | \$0 | PG&E Steam Generator
Mitigation Funds | 2011 | | 6 | Construct 100 Stall Intercept Parking Lot | \$1,093,178 | | \$1,093,178 | | \$0 | County Parking In-Lieu
Fee Program/APCD | 2020 | | Ontario R | oad | | | | | | | | | | Widening for Bike Lanes | \$650,600 | | \$650,600 | | \$0 | APCD (potential) | Complete | | State Rou | te 101 | 1 | I | | 1 | 1 | | | | 8 | Modify Avila Interchange | \$7,920,000 | | \$3,960,000 | | \$3,960,000 | STIP (potential) | 2020 | | 7 | San Luis Bay Drive @ SR 101 Bridge Widening | \$4,000,000 | | \$2,000,000 | | \$2,000,000 | STIP (potential) | 2015 | | 4 | San Luis Bay Drive Interchange Project Study Report | \$250,000 | | | | \$250,000 | | 2012 | | Cave Land | ding Bike Trails | | | | 1 | 1 | | | | 5 | Construct Trail Between Shell Beach and Avila Beach | \$379,000 | | \$379,000 | | \$0 | Department of Fish and Game | 2012 | | | | 005.055.55 | | 0.10.05 : = : : | # | 00.45-51 | | | | | Totals | \$25,339,860 | | \$16,884,546 | \$0 | \$8,455,314 | | | | Bu | Total As of | | | |----------------|---------------------------------|---------------------|--| | | | | 06/30/09 | | Project # | Description | Budgeted 2008/09 |) | | AVILA RIF - Be | ginning Cash Balance | | 138,995.45 | | | Fees | 12,000 | 5,944.00 | | | Interest | 5,000 | 6,264.63 | | | Subtotal Cash Balance | | 151,204.08 | | | Project Costs: | Budgeted
2008/09 | Total Spent
This Fiscal
Year As of | | | | | 06/30/09 | | 300181 | San Luis Bay Dr Bridge Widening | (98,004) | | | | Other funding | - | | | | TOTAL FUNDED BY AVILA RIF | (98,004) | -236,087.38 | | 300364 | San Luis Bay Dr Interchange | 200,000 | 89.98 | | | | | | | 245R12C123 | AVILA TRAFFIC STUDIES | 5,000 | 23,880 | | | Total Costs | | -212,117.70 | | | Ending Cash Balance | | 363,321.78 | In prior years, Avila Fee area funded the San Luis Bay Drive Bridge Project, now that much of the cost has been reimbursed with Federal Bridge Funds, the Avila Fee area is refunded this amount. Any new costs to the project will reduce the refunded amount. # Avila Valley Circulation Study ### San Luis Obispo County, California Final: January 2009 5th Draft: October 2008 4th Draft: February 2008 3rd Draft: November 2007 2nd Draft: August 2007 1st Draft: March 2007 Prepared for the County of San Luis Obispo Public Works Department County Government Center, Room 207 San Luis Obispo, California 93408 805,788,2318 Ryan Chapman, P.E., Project Manager Prepared by TPG Consulting, Inc. 560 Higuera Street, Suite E San Luis Obispo, California 93401 805.547.9498 Charles Clouse, AICP, Principal Ruth Davis, P.E., Senior Civil Engineer Jill Gormley, T.E., Associate Engineer Walter Hutcheson, Assistant Engineer Jennie Miller, Associate Planner Nabor Solorio, Graphic Designer Sofie Leon, Technician Robert Jones, Technician | TABLE OF CONTENTS | <u>PAGE</u> | |---|-------------| | CHAPTER 1 INTRODUCTION | 1 | | Figure 1: Vicinity Map | 3 | | CHAPTER 2 EXISTING CONDITIONS | 6 | | Figure 2: Classification Map | 7 | | Figure 3: Avila Valley Area Aerial | 8 | | Table 1:
Transportation Corridor Data | | | Figure 4: Existing Traffic Control Devices | | | Figure 5: 2006 Traffic Volumes | | | Table 2: Level of Service Standard | | | Table 3: Roadway Capacity 2-lane (two-way volumes) | | | Table 4: Intersection Level Of Service Description | | | Figure 6: Parking Program | | | Table 6 Parking Demand | | | Table 7 Parking Supply Summary | | | Figure 7: Bicycle System Plan | | | Figure 8: Emergency Evacuation Plan | | | CHAPTER 3 BUILDOUT PROJECTIONS WITHOUT IMPROVEMENTS | 24 | | Figure 9: Future Peak Hour Traffic Volumes | | | Table 8: Future (2020) Conditions | | | CHAPTER 4 RECOMMENDED IMPROVEMENT PROJECTS | 29 | | Table 9: Mitigated Future (2020) Conditions | | | CHAPTER 5 ALTERNATIVE TRANSPORTATION MODES | 31 | | Figure 10: Recommended Improvements | 35 | | CHAPTER 6 IMPROVEMENT COST ESTIMATES AND FUNDING MECHANISM | S 36 | | Table 10: Road Improvement Cost Estimates | | | Table 10: Road Improvement Cost Estimates | | | Appendix A Existing Count Data | | | Appendix B Existing Conditions Freeway and Intersection Levels of Service | | | Appendix C Existing Conditions Peak Hour Signal Warrants | | | Appendix D Traffic Model Plots, Methodologies and Socioeconomic Data | | | Appendix E Traffic Model Plots, Methodologies and Socioeconomic Data | | | Appendix F Future Conditions Freeway and Intersection Levels of Service | | | Appendix G Future Conditions Peak Hour Signal Warrants | | | Appendix H Mitigated Future Conditions Intersection Levels of Service | | | Appendix I Road Improvement Order of Magnitude Costs | | ### CHAPTER 1 INTRODUCTION This study is the latest in a series of evaluations of the Avila Beach and Avila Valley area. Analysis of the circulation system began in 1988 with the first comprehensive study of the existing and future traffic demand. That study, completed by DKS Associates, was initiated to address concerns over the ability of the existing and planned roadway system to accommodate increased traffic levels in light of development proposals in the area. That study recommended a series of capacity enhancements for the county roads plus several transportation management strategies, such as park and rides, public transit, bicycle and parking management. This study was used as the basis for the implementation of the County's Avila Road Improvement Fee Program. In 1992 a follow up study was completed to further reframe the technical evaluation of the current and future roadway capacities and affirm the improvement program. That study was authored by Wilbur Smith and Associates and focused on development of moderate roadway capacity enhancement and additional detail on the non-street strategies. As stated in Title 22, Land Use Ordinance from the San Luis Obispo County Code: "The following standards apply within the Avila Beach urban reserve line to the land use categories or specific areas listed. Avila Beach urban standards are grouped by those applicable to Avila Valley and San Luis Bay Estates. - A. Avila Valley. The following standards apply only to Avila Valley, to the land use categories or specific areas listed. - 1. Communitywide Avila Beach Drive and San Luis Bay Drive Level of Service. The level of service (LOS) for Avila Beach Drive and San Luis Bay Drive shall be based on the average hourly weekday two-way 3:00 p.m. to 6:00 p.m. traffic counts to be conducted during the second week in May of each year." Finally, the 1992 document was the basis for an update of the Road Improvement Fee Program. In 2001, the Avila Beach community's remediation work was completed by Unocal. That same year, the Avila Beach Specific Plan was adopted by the County Board of Supervisors. The Specific Plan outlined the vision for Avila Beach and provided the primary impetus for the 2001 Avila Circulation Study, a comprehensive transportation evaluation of the Avila Beach and Avila Valley area. That Study, prepared by TPG Consulting, identified both the short-range and long-range circulation needs of the Avila Beach and Avila Valley area. In November 2003, TPG Consulting prepared the 2003 <u>Avila Circulation Study</u>, <u>Port San Luis Harbor Master Plan Update</u> for the Harbor District by updating the 2001 Circulation Element. It builds on the information developed for the 2001 Study, updates the existing conditions and analyzes the future conditions with and without the proposed changes to Port San Luis Harbor. The Port Master Plan responded to changing opportunities for the use and development of the Port's properties to meet the present and future needs of the boating public. Detailed information on the Harbor plans can be found in the Port San Luis Harbor District, <u>Port Master Plan</u>, June 10, 2003. The study encompasses the following tasks: - 1. Review of the existing conditions - 2. Evaluation of the future conditions - 3. Development of transportation system options - 4. Preparation of improvement cost estimates - 5. Outlining funding options - 6. Review of the emergency access plan The Avila Valley area is an unincorporated coastal area just north of the City of Pismo Beach and west of U.S. 101. Avila Beach is a small, unincorporated community located in the south-central coastal portion of San Luis Obispo County. On San Luis Bay, the town of Avila Beach backs up against the Irish Hills, which are part of the California Coast Range. Port San Luis is a working port providing facilities and services to coastal residents and visitors. The study area is a popular tourist/recreational area with beach, marina, hot springs, golf, and other recreational attractions. The Diablo Canyon Nuclear Power Plant is also located within the study area. The Valley area has recently experienced growth in residential and related commercial uses, and further growth is anticipated over the next ten years. Avila Beach is about nine miles south of the City of San Luis Obispo. From U.S. 101, the major north/south highway traversing this portion of California, Avila Beach is accessed from either Avila Beach Drive or San Luis Bay Drive. Figure 1 shows the regional location of Avila Beach. The approach to Avila Beach is through the Avila Valley, where major housing tracts, a local school and two mineral spring resorts are located. West of Avila Beach along Avila Beach Drive is Port San Luis, operated by the local Harbor District. Avila Beach Drive also serves PG&E's Diablo Canyon Nuclear Power Plant. The town of Avila Beach is less than a half-mile square, bordered by Avila Beach Drive, which forms the northern and western edges of the town, the Pacific Ocean to the south, and the former site of the Unocal Tank Farm to the east. San Luis Obispo Creek, which parallels Avila Beach Drive, creates a natural division between the town and the Avila Beach Golf Course and the San Luis Bay Inn to the west and north. The former Unocal Tank Farm site was home to tank storage units for over 90 years. The tanks were removed in 1998. Over the past five (5) years, Avila Beach has undergone redevelopment with about 40% of the CBD being developed. There are tentative discussions about development at the old Tank Farm site that are outside of this study/fee program and would need to be explored under GPA. Front Street, which parallels the beach, is the main commercial street in Avila Beach. It offers locals and tourists alike beach-supporting retail, such as food service, rental equipment, grocery store and bars. Local landmarks in Avila Beach are the historic commercial storefronts on Front Street, the Avila Beach Pier and the San Luis Yacht Club. The town has an old-fashioned beach town feel, attracting large numbers of tourists on summer weekends. ### **Community Input Process** The <u>2001 Avila Circulation Study</u> was greatly assisted by the Transportation Committee of the Avila Valley Advisory Council (AVAC). The citizens group met a number of times during the preparation of the 2001 study, providing valuable insight and guidance in the development of the existing and future conditions evaluations, along with the selection of appropriate improvement options. In this study the Land Use Committee of AVAC met to discuss and update the <u>2007 Avila Valley Circulation Study</u>. The Committee and the process were guided by a series of policy statements. These include the following Mission Statement, Goals and Objectives. <u>Mission Statement:</u> To promote an appropriate and efficient inter-modal transportation system to serve Avila Valley and Port San Luis area residents, businesses and recreational users consistent with the built and natural environments, fiscal, and cultural constraints. <u>Goal 1:</u> To provide an appropriate and efficient transportation system to serve the present and future needs of the Avila Valley and Port San Luis. Objective 1: Using current land use and traffic data, review the list of improvements and corresponding priorities contained in the Avila Circulation Study Capital Improvement Program (CIP) to determine their relevance. Specific areas to be reviewed include, but are not limited to, the following: The need for, and timing of, improvements to: - The Avila Village entrance, including a street sign for Bay Laurel Drive. - ➤ Avila Beach Drive - > The Avila Beach Drive and San Luis Bay Drive interchanges with U.S. 101 - The Ontario Road (frontage road) intersection at the San Luis Bay Drive interchange with U.S. 101 - > Other arterial roads Objective 2: Improve safety throughout the transportation system serving the Avila Valley and Port San Luis by identifying traffic controls and other improvements necessary to prevent conflicts among motor vehicles, bicycles, and pedestrians. Review the Avila Circulation Study CIP to identify gaps in planned transportation safety improvements. Objective 3: Review the adequacy of emergency access and evacuation plans for the Avila Valley. # **Goal 2:** To ensure that special events in the Avila Valley provide adequate access management.
Objective 1: Obtain relevant information about past and scheduled future events and, upon consultation with pertinent entities, formulate any necessary recommendations for reduced impacts. ### Goal 3: To expand the use of alternative forms of transportation in the Avila Valley - Objective 1: Identify transportation options for special events and peak summer weekend visitorship, including park and ride shuttle transportation. - Objective 2: Identify strategies (vehicle pools, public transit, paid parking, etc.) to reduce the number of commuter trips. # **Goal 4:** To ensure the transportation system accommodates buildout of the land uses designated by the San Luis Bay Area Plan, both Inland and Coastal portions. - Objective 1: Ensure that road capacities are consistent with relevant provisions of the Coastal Act regarding coastal-related and coastal-dependent uses. - Objective 2: Identify potential development allowed by the San Luis Bay Area Plan, both Inland and Coastal portions, and evaluate potential transportation impacts. - Objective 3: The County intends to require a Traffic Impact Study be prepared in conjunction with any proposed amendment to the Area Plan. # <u>Goal 5:</u> To identify a framework for information sharing, coordination and implementation of transportation-related issues among stakeholders. These Goals and Objectives continue to be applicable for this update ## CHAPTER 2 EXISTING CONDITIONS The Avila area is served by two interchanges, which connect to U.S. 101. West of the freeway these two routes join into a single roadway leading to the area's beach activity center and residential areas. All local roadways in the study area have two through lanes and are classified by the County of San Luis Obispo into three general categories: arterial, collector, and minor roadways. U.S. 101 is classified by Caltrans as a freeway and has four lanes. The roadway network is shown in Figure 2. The two arterial routes providing primary access to the study area are Avila Beach Drive and San Luis Bay Drive. Avila Beach Drive is a winding 4 1/2 mile long two-lane roadway from U.S. 101 to its terminus at Port San Luis. East of Cave Landing Road, Avila Beach Drive maintains minimal shoulders as the roadway width is constrained on the south by steep rocky slopes and on the north by the parallel San Luis Obispo Creek. Left turn bays exist on Avila Beach Drive at selected intersections. Parking is allowed on the portion of Avila Beach Drive west of San Luis Street. San Luis Bay Drive begins east of U.S. 101 and terminates with a stop sign controlled approach at Avila Beach Drive. This arterial roadway is generally used by trips originating or terminating north of Avila Beach. Shoulders are provided along San Luis Bay Drive; however, parking is not permitted. The intersection of Avila Beach Drive at San Luis Bay Drive is the most critical intersection in the study area. As the juncture of the main access roads to Avila Beach, the highest turning volumes are experienced at this location. A number of collector roadways are found in the area and they include Front Street, San Luis Street, San Miguel Street, Shell Beach Road, Cave Landing Road, See Canyon Road, and Monte Road. Front Street is located between the beach and the commercial/residential development to the north. San Luis Street and San Miguel Street provide access from Avila Beach Drive to the commercial and parking facilities in town. Shell Beach Road is a frontage road located west of U.S. 101 from Avila Beach Drive to Pismo Beach. Lupine Canyon Road is a private collector/drive serving 630 homes in the San Luis Bay Estates area. Cave Landing Road is a narrow route providing access to Pirates Cove. See Canyon Road is a rolling narrow two-lane route that accesses agriculture and single-family homes and agricultural operations west of U.S. 101. This roadway extends as Prefumo Canyon Road into the City of San Luis Obispo. Finally, Monte Road provides a connection between San Luis Bay Drive and Avila Beach Drive east of U.S. 101 and also provides access to agricultural and residential areas to the east. The remaining roads, which are not classified by the County of San Luis Obispo as either arterials or collectors are deemed to be minor roadways. Figure 3 shows an existing aerial of the Avila Beach area. The transportation corridor data, including right-of way-widths, pavement width, travel lanes, travel speed, grades and planned improvements, for the study locations in the Avila area are shown in Table 1. Page 8 Avila Valley Circulation Study San Luis Obispo County TOWN OF AVILA BEACH | TABLE 1:
TRANSPORTATION CO | ORDINOR DATA | | | | |-------------------------------|-------------------------------------|-----------------|--------------|---------------------------| | Road | Segment Segment | Pavement widths | Travel lanes | Travel speed (85%/posted) | | Avila Beach Drive | U.S. 101 to San Luis Bay Dr. | 29-37 | 2 | 60/45 | | | San Luis Bay Dr. to San Luis
St. | 49-62 | 2 | na/45 | | | San Luis St. to San Miguel St. | 62 | 2 | na/40 | | | San Miguel St. to Port San Luis | 36-62 | 2 | 47-49/40 | | Cave Landing | | 25 | 2 | na/NPS | | Front Street | | 47-57 | 2 | na/NPS | | Monte Road | | 18-21 | 2 | na/NPS | | Ontario Road | | 30-31 | 2 | na/NPS | | Shell Beach Road | | 34-40 | 2 | na/45 | | San Luis Street | | 35 | 2 | na/NPS | | San Luis Bay Drive | U.S. 101 to Bay Laurel. | 35-36 | 2 | na/55/25
(school zone) | | | Bay Laurel. to Avila Beach Dr. | 36 | 2 | na/NPS | | See Canyon Road | • | 18-23 | 2 | na/NPS | | Squire Canyon
Road | | 23 | 2 | na/15 | na = not available $NPS = no \ posted \ speed$ The Avila area roadway network was inventoried to determine the roadway cross-sections, average daily traffic volumes, traffic control devices, and posted speeds. All roadway intersections in the study area are presently stop sign controlled or uncontrolled. Currently, no intersections are signalized. Posted speed limits in the area were also inventoried. Figure 4 depicts the locations of stop signs and the posted speed limits in the study area. ### 2006 Traffic Volumes Historically, the County of San Luis Obispo has collected traffic volume data for the Avila area. Permanent count stations have been established on Avila Beach Drive just west of San Luis Bay Drive, San Luis Bay Drive west of Ontario Road and San Luis Street west of Avila Beach Drive. These locations are counted annually in May. These traffic counts generally tally the number of vehicles on a per hour, per day, and per week basis. This information provides the basis for analyzing the current conditions of the roadway system. During the Unocal Beach clean-up efforts, the count stations were discontinued. Regular traffic counting was resumed in 2003. TPG Consulting collected daily traffic volume count information in 2006 during both the summer/holiday weekends (count data collected during the 3-week period between August 11, 2006 through September 4, 2006) and the non-summer weekday periods (count data collected during the week of September 5, 2006 through September 13, 2006). It should be noted that traffic volumes collected along San Luis Bay Drive were collected prior to the road closure. All count data is included in Appendix A. For analysis purposes, a typical weekday is considered to occur on a Tuesday, Wednesday or Thursday. For study purposes Mondays and Fridays are excluded from typical weekday analysis due to fluctuations typically associated with weekend travel. The peak hour for both the weekend summer/holiday and non-summer weekday time periods were determined based on the count data collected in 2006. The 2006 traffic volume count data used for each of the study locations is shown on Figure 5. The Avila area is a very attractive destination for recreational users due to the number of outdoor facilities and activities available in the area. The beach and port facilities, in particular, generate their peak use during the summer season on weekends. Traffic to/from these sites during non-summer months is typically less than the summer traffic, usually on the order of 21 percent less during a weekday. The non-summer weekday traffic volumes are consistently lower than summer weekday volumes. The distribution of traffic over a 24-hour period is a constraining factor on the transportation circulation system. The larger the peak condition for any time period, the greater the demand placed on roadway capacity. While the above comparisons are solely made for the major roadways, seasonal variations may differ slightly for internal roadways. Typically, non-summer and summer/holiday traffic will vary during a typical week with Tuesday being the busiest weekday and Saturday being the busiest weekend day. This trait consistently occurs at several locations for both summer and non-summer conditions. While the percentage increase in summer weekend traffic over summer weekday traffic is significant at the major access routes to the beach area, the largest changes occur on streets in the town. Based on the 2006 traffic count Avila Beach Drive, between San Luis Bay Drive and San Luis Street, carried the largest two-way traffic volumes in the area, ranging from 8,800 vehicles per day during non-summer weekdays to over 16,400 vehicles per day on holiday/summer weekends. Page 11 ### Level of Service Methodology The maintenance of acceptable levels of service (LOS) for the Avila Valley and Avila Beach area streets is important for balancing future development with the reasonable level and scale of roadway improvements in the community. The County of San Luis Obispo has established level of service "C" as the accepted level of service for roadways in the Avila area (Local Coastal Plan – San Luis Bay – Coastal Area Plan). Previous studies have attempted to acknowledge the wide range of traffic volumes experienced in the area during the summer months. This prompted the establishment of a level of
service of "D" for the summertime weekends. Table 2 shows the accepted level of service standard during the non-summer weekday peak hour and during the summer weekend peak hour. | TABLE 2:
LEVEL OF SERVICE STANDARD | | |---------------------------------------|--------------------| | Level of Service Standard | Peak Hour | | C | Non-summer weekday | | D | Summer weekend | The 1992 Study laid the groundwork for a program to test the performance of the street system in the study area. By establishing a level of service standard more closely tied to the seasonality of the traffic demand, the County was able to focus on the normal demand. In February 1994 the County Board of Supervisors established a monitoring program for Avila area roads based on the average non-summer weekday peak-hour traffic volume. This monitoring program includes annual traffic counts collected during the month of May. These annual traffic counts are used to calculate the current level of service. Peak hour capacity was calculated for roadway segments using the 1997 Highway Capacity Manual methodology for two-lane roadways. This calculation was then compared against the previously adopted capacity contained in the 1992 Study. The 1997 Highway Capacity Manual was based on substantial research on the carrying capacity of roadways and at the time represented the current industry standard for evaluation of level of service on a 2-lane roadway. That comparison showed that the 1997 Highway Capacity Manual yielded a significantly higher capacity. In discussing the applicability of this latest information to the Avila Circulation Study, it was determined that a blending of the 1992 study capacity and the 1997 Highway Capacity Manual capacity would be appropriate. That process yielded the roadway capacities shown in Table 3 for use in this Study. | TABLE 3:
ROADWAY CAPACITY
2-LANE (TWO-WAY VOLUMES) | | | |--|-------------------|--------------------| | Level of Service | Service Flow Rate | Volume to Capacity | | A | < 1,180 | 0.00-0.59 | | В | < 1,380 | 0.60-0.69 | | С | < 1,580 | 0.70-0.79 | | D | < 1,780 | 0.80-0.89 | | Е | < 2,000 | 0.90-0.99 | | F | > 2,000 | > 1.00 | For U.S. 101 the <u>2000 Highway Capacity Manual</u> and <u>HCS+</u> software, freeway module, was used for calculation of capacity using the basic freeway segments, as appropriate. The analyses were based on peak hour traffic volumes and existing roadway conditions including terrain, lane and shoulder widths, vehicle mix and direction of flow. #### **Intersection Level of Service** For analysis purposes, the <u>2000 Highway Capacity Manual</u> defines six levels of service (LOS). They are given letter designations from "A" to "F", with "A" representing the best operating conditions and "F" the worst. Table 4 contains a complete description of each level of service category for signalized and unsignalized intersections. The intersection levels of service calculations were completed using <u>HCS+</u> (unsignalized) and <u>Synchro 6.0</u> (signalized) software packages. In the future scenario, the intersection of Avila Beach Drive and San Luis Bay Road is analyzed signalized. | TABLE 4:
Intersect | TION | Intersections | | | | |-----------------------|-------------------------|--|--------------------------------------|----------------|--| | | SERVICE DESCRIPT | TION | Signalized Unsignalized ¹ | | | | Level of
Service | Conditions | Delay
(secs/veh) | Delay
(secs/veh) | | | | "A" | Free Flow | Users experience very low delay. Progression is favorable and most vehicles do not stop at all. | ≤ 10.0 | ≤ 10.0 | | | "B" | Stable
Operations | Vehicles travel with good progression. Some vehicles stop, causing slight delay. | > 10.0 to 20.0 | > 10.0 to 15.0 | | | "C" | Stable
Operations | Higher delays result from fair progression. A significant number of vehicles stop, although many continue to pass through the intersection without stopping. | > 20.0 to 35.0 | > 15.0 to 25.0 | | | "D" | Approaching
Unstable | Congestion is noticeable. Progression is unfavorable, with more vehicles stopping rather than passing through the intersection. | > 35.0 to 55.0 | > 25.0 to 35.0 | | | "E" | Unstable
Operations | Traffic volumes are at capacity. Users experience poor progression and long delays. | > 55.0 to 80.0 | > 35.0 to 50.0 | | | "F" | Forced Flow | Intersection's capacity is oversaturated, causing poor progression and unusually long delays. | > 80.0 | > 50.0 | | Source: 2000 Highway Capacity Manual, Transportation Research Board. Traffic volumes for the study area were developed using the 2006 daily summer weekend and daily non-summer weekday traffic counts collected by TPG. Non-summer weekday traffic volumes along U.S. 101 were taken from the 2005 Traffic Volumes on California State Highways. Based on Caltrans provided count station data along U.S. 101 near the Avila area, these volumes were factored to create the summer/holiday weekend volumes. The levels of service were calculated for the study locations using the methodology described previously. Table 5 shows the 2006 non-summer weekday volumes and summer weekend/holiday traffic volumes. Table 5 also includes the volume-to-capacity ratio (v/c) calculation and the resulting LOS for each road segment. The analyses were based on both existing non-summer weekday and summer/holiday peak hour traffic volumes. For the freeway analysis, additional factors such as terrain, roadway lane and shoulder width, vehicle mix, and direction of flow were used to establish capacity. Table 5 summarizes the estimated peak hour LOS at several locations. These are based on the two-way peak hour volumes shown in the Table 5. ¹ Unsignalized intersections include TWSC and AWSC | EXISTING CONDITIONS | | Non-Summer
Weekday
Peak Hour | | | | Summer/Holiday Weekend
Peak Hour | | | | |---|--|------------------------------------|---------------|------|------------------|-------------------------------------|--------|---------|-------------------| | Road | Segment | Volume | v/c | 3 | LOS | Volume | V | $/c^3$ | LOS | | Avila Beach Drive | U.S. 101 to San Luis Bay Dr. | 816 | 0.4 | 1 | Α | 1,131 | 0. | 57 | A | | | San Luis Bay Dr. to San Luis
St. | 878 | 0.4 | 4 | A | 1,217 | 0. | 61 | В | | | San Luis St. to San Miguel St. | 676 | 0.3 | 4 | Α | 937 | 0. | 47 | A | | | San Miguel St. to Port San Luis | 525 | 0.20 | 6 | Α | 568 | 0. | 28 | A | | Cave Landing | | 54 | 0.03 | 3 | A | 59 | 0. | 03 | A | | Front Street | | 141 | 0.0° | 7 | | 195 | 0. | 10 | A | | Monte Road | | 60 | 0.0 | 3 | Α | 64 | 0. | 03 | A | | Ontario Road | | 96 | 0.0 | 5 | Α | 133 | 0. | 07 | A | | Shell Beach Road | | 330 | 0.1 | 7 | A | 341 | 0. | 17 | A | | San Luis Street | | 131 | 0.0 | 7 | A | 172 | 0. | 09 | A | | San Luis Bay Drive | U.S. 101 to Bay Laurel | 506 | 0.23 | 5 | Α | 582 | 0. | 29 | A | | • | Bay Laurel to Avila Beach Dr. | 437 | 0.2 | 2 | Α | 520 | 0. | 26 | A | | See Canyon Road | | 105 | 0.0 | 5 | A | 128 | 0.06 | | A | | Squire Canyon Road | | 42 | 0.02 | 2 | Α | 43 | 0. | 0.02 | | | | | | Dens | ity | | | Der | sity | | | Freeway ¹ | Segment | Volume | (pc/m | i/h) | LOS | Volume | (pc/i | mi/h) | LOS | | U.S. 101 | N of San Luis Bay Dr. | 8,300 | | - | F | 8,666 | - | | F | | | San Luis Bay Dr. to Avila | 7,600 | 36. | 0 | Е | 7,935 | 40 |).5 | Е | | | Beach Dr. | 7,000 | 30. | 0 | E | 1,933 | 40 |).5 | E | | | S of Avila Beach Dr. | 8,600 | | | F | 8,979 | - | | F | | | | N | lon-Sum | ımer | | Sur | | Holiday | 7 | | | | | Weekd | lay | | | Week | | | | | Peak Hour | | Peak Ho | | | | Peak I | | | | • | Signal Warrant | | | De | lay ⁴ | | | D | elay ⁴ | |
Intersection ² | Met | LOS | | (se | ecs) | LOS | | (s | secs) | | Avila Beach at San | YES | | | | | | | | | | Luis Bay | 1 LS | | | | | | | | | | o EB Left | | A | | | .4 | A | | | 8.4 | | SB Approach | | D | | 3 | 1.0 | E | | 3 | 36.1 | | Avila Beach at San | NO | | | | | | | | | | Luis Street | 1,0 | | | | | | | | | | o WB Left | | A | | | .3 | A | | | 9.4 | | o NB Approach | | В | | 14 | 1.2 | В | | 1 | 4.7 | | Avila Beach at San | NO | | | | | | | | | | Miguel Street | . 2 | | | _ | | | | | | | o WB Left | | A | | | .1 | A | | | 9.2 | | o NB Approach | | В | | 14 | 1.2 | В | | 1 | 4.7 | | Avila Beach at First | NO | | | | | | | | | | Street | | | | | _ | | | | | | WB LeftNB Approach | | A | | | .2 | A
C | | | 9.3 | | o NB Approach | TI CONTRACTOR OF THE CONTRACTO | C | 1 | 1.4 | 5.1 | () | | 1 | 5.7 | LOS calculated using HCS+ Freeway Module V/C = volume-to-capacity ratio --- = exceeds software parameters ² LOS calculated using HCS+ Unsignalized Module ⁴ Delay per vehicle Caltrans uses a LOS "C" as their acceptable standard for traffic impact studies and the County of San Luis Obispo uses a LOS "C" during the non-summer weekday peak hour and a LOS "D" during the summer weekend peak hour as their acceptable standard for traffic impact studies. The County policy was established in 1995 through the adoption of an ordinance (*Co. Ord. 2702*). The ordinance calls for the level of service to be based on the average weekday two-way volume for Avila Beach Drive and San Luis Bay Drive between the hours of 3pm and 6pm during the second week in May. All County segments currently operate at LOS "A" and therefore meet the criterion. U.S. 101 however, currently is operating at a level of service "E" or worse, falling below the Caltrans LOS standard. Copies of the freeway segment and intersection analyses are included in Appendix B. A controlling location, or "bottleneck," for traffic flow in the study area is the intersection of San Luis Bay Drive at Avila Beach Drive. This critical intersection is controlled by a stop sign on San Luis Bay Drive. Based on traffic volumes observed during a weekday during the summer months, the southbound approach of the Avila Beach Drive at San Luis Bay Drive intersection is currently operating below an acceptable level of service (LOS "F") during the PM peak hour. This is due to the stop sign controlled southbound left-turn movement onto eastbound Avila Beach Drive, which, due to the shared southbound lane, delays right-turning vehicles onto westbound Avila Beach Drive. ### **Signal Warrant Analysis** Rural peak hour volume signal warrants were prepared for the unsignalized intersections based on the methodologies in the *California Manual on Uniform Traffic Control Devices (MUTCD) for Streets and Highways*. Based on the rural peak hour volume warrant, the warrant is currently met at the Avila Beach Drive at San Luis Bay intersection. The warrant is not currently met at the remaining unsignalized intersections in the Existing conditions. This warrant analysis is limited to the peak hour volume warrant only and other conditions may exist which meet other traffic signal warrants. Copies of the warrant analyses are included in Appendix C. ### **Transit Service** Since 1990, transit service to and from Avila and Avila Valley has been provided in various forms. Beginning in 1990 the San Luis Obispo Regional Transit Agency (SLORTA) operated direct daily service to Avila during the summer. Three round trips per day were provided and the ridership generated a fare box return of less than 1%. This service was not continued in 1991 because of this limited performance. Again in the summer of 1995, service to Avila was attempted. Similar results occurred and the ridership generated a fare box ratio of less than 2%. Currently, service to the Avila Valley is limited to daily service from the Central Coast Area Transit (CCAT) service between San Luis Obispo and Pismo Beach. A flag stop is provided at the P.G. & E. information center for those riders wishing to travel to or from the Valley. No service is provided to the town of Avila. In 2001, the Avila Beach Community Foundation received a shuttle bus grant from the San Luis Obispo Air Pollution Control District (SLOAPCD) in the amount of \$140,000. The Foundation approved a matching grant of \$50,000 for a total project cost of \$190,000. The demonstration project provided for shuttle bus service to and from Avila Beach and Avila Valley. It began operation in January 2002 and ended in June 2003. The Foundation applied to the San Luis Obispo Council of Governments (SLOCOG) to continue the service. In July 2003, SLOCOG found this to a reasonable to meet un-met transit meet, and directed the County to secure 90% of the funding. The Foundation is responsible for the 10% match. The Avila Beach Community Foundation began a weekend only trolley bus service in January of 2002 serving the Avila area up to the border o Pismo City. This initial Trolley service lasted one and a half years finances by a grant from the Foundation and the Air Pollution Control District, which permitted the purchase of a used Trolley as well as operating funds. The Foundation applied for and received a designation by SLOCOG of this Trolley service as an "Unmet Transit Need", "Reasonable to Meet" and therefore received Transportation Development monies from the County of San Luis Obispo to continue the Trolley operation beginning July 1, 2003, with the Foundation providing 10% of the cost to eliminate the need to charge a fare. To integrate this Trolley service with other public transit, SLOCOG directed the South County Transit Agency to assume responsibility for operating and financing the Trolley. The SCAT operating began January 1, 2005 utilizing the Trolley owned by the Foundation and with the Foundation continuing to grant funds to cover 10 of the cost. Recently, SCAT received a grant of \$120,000 to use in acquiring an almost new Trolley to replace the Foundation Trolley. The utilization of the Trolley has not yet achieved the goal set by SLOCOG but community discussions of parking and traffic problems typically includes a reference to a potential increased use of the Trolley. ### **Parking** Public parking is currently supplied in a number of locations within Avila Beach. Specifically, the Earl's Alley parking lot, on-street parking in the commercial area of town and parking along Avila Beach Drive are the primary locations. Figure 6 shows the public parking lot and on-street parking locations. Since the <u>2003 Harbor District Master Plan Update</u>, the parking supply has increased slightly from 952 to 956 overall spaces, with the four (4) added parking spaces located at the Post Office Parking Lot. Additional key points about the public parking supply are as follows: ♦ Front Street Diagonal Parking. Parking along Front Street has historically been in a diagonal parking arrangement. The remodeled streetscape re-installed the historic parking pattern along Front Street. Spaces have been laid out at 45 degrees and 30 degrees on the two sides of the street, in order to make it possible to provide wider sidewalks. Time limits of 3 hours between the hours of 6:00 AM and 2:00 AM have been imposed between San Luis Street and San Juan Street. - ♦ Side Street Parking. Parking on some side streets has been changed from parallel parking in some locations to diagonal parking. These locations include both sides of San Juan Street and San Francisco Street. Time limits of 3 hours between the hours of 6:00 AM and 2:00 AM have been imposed along both San Juan and San Francisco Streets between Front Street and First Street. - Residential Neighborhood Parking. Residential neighborhood on-street parking is planned to continue to be uncontrolled, with residents and beach goers able to use these stalls. Currently, all new development in Avila Beach must supply its own on-site parking to meet County standards. This requirement has been identified as an unnecessary burden on restaurant and retail development. In most cases, commercial development in Avila relies on the beach itself to generate its customers; visitors park for the beach and then walk to retail and restaurant locations. Parking for dinner restaurants is readily available since many beach-goers have vacated their spaces by late afternoon. As shown in Table 6, primarily beach users generate parking demand in Avila Beach. When the beach is full, beach goers create a demand for approximately 1,000 parking spaces. In addition, the commercial uses also create a demand for parking. On busy summer days, that commercial demand is somewhat shared with the beach parking demand. People visit these local businesses as a part of a trip to the beach, so most parking demand for the commercial uses is contained within the beach demand. At less busy times, those trips made to visit the Avila Beach businesses are necessarily shared trips to the beach. | TABLE 6 PARKING DEMAND | | |---|-----------| | Retail parking demand (at 3 spaces per 1,000 square feet) | | | Proposed Retail (70,000 square feet) | 210 | | Total Potential Retail Parking Demand | 210 | | Beach Demand (1 person per 80 square feet of beach; 3.35 persons per car; 95.9% auto use) | | | Usable Beach Area | 6.4 acres | | Total Number of Possible Beach Users | 3,485 | | Parking Spaces Required | 998 | | Total Potential Beach Parking Demand | 998 | Substantial parking will be supplied within the town area. However it is projected that during the busiest summer demand there will be a shortage of parking in the community. Assuming a parking occupancy rate of 85%, which accounts for vehicle turn-over and commercial parking activities, the available supply at any given moment will be approximately 800 stalls. With demand projected to be approximately 1,000
vehicles, it is estimated that during the busiest summer days the community will fall short by about 200 stalls. Table 7 shows a current inventory of the parking supply. In addition to these parking resources within the town, several additional locations within the study area provide parking. Included in this inventory is the Bob Jones Park and Ride facility located on Ontario Road. This 27-stall facility was developed by the County of San Luis Obispo and serves a dual role. During the week it provides a venue for park-and-ride activity along the U.S. 101 corridor, while on weekends it acts as a trailhead for the bicycle/pedestrian trail running between Ontario Road and the town. The second major facility is the P.G. & E. building, also located on Ontario Road. This former information center for the Diablo Canyon Power Plant currently has 76 stalls. | TABLE 7 | | |--------------------------------------|--------| | PARKING SUPPLY SUMMARY | | | Location | Supply | | Front Street | 140 | | Side Streets | 132 | | First Street | 61 | | Earl's Alley Parking Lot | 355 | | Post Office Parking Lot | 18 | | Avila Beach Drive (curbside parking) | 250 | | Total Available Public Parking | 956 | ### **Bicycle** The Avila Beach Specific Plan proposes a number of improvements to bicycle facilities in the Avila Beach area. An extension of the existing Bob Jones Bicycle Path is proposed to terminate at the Front Street Park, with the path crossing under the Avila Beach Drive Bridge. If the crossing under the bridge is shown to be infeasible for structural, environmental or other reason, the bike path will cross Avila Beach Drive at the intersection of San Miguel Street, and terminate at the Earl's Alley parking lot or some other location where bicycle racks can be provided. Bicycle storage facilities are proposed to be located in the town of Avila Beach at several key locations. There would be bicycle racks installed in the Front Street park, at both ends of the Front Street Plaza, at the post office and Community Services District building, and at the foot of the pier. A bicycle-pedestrian path between Avila Beach and Shell Beach via Cave Landing Road could be constructed, as well. If the existing landslide damage along Cave Landing Road is repaired, the right-of-way could be designed to accommodate a recreational trail facility. A right-of-way would be needed to extend the bicycle/pedestrian path through the Tank Farm site to connect with Front Street. A copy of the bicycle system plan is shown in Figure 7. ### **Emergency Evacuation Plan** As part of the operations plans for the Diablo Canyon Nuclear Power Plant, an Emergency Evacuation Plan has been prepared and, in the wake of current disasters such as Hurricane Katrina, has been reevaluated by the San Luis Obispo County Civil Grand Jury in the 2006-2007 San Luis Obispo County Civil Grand Jury Report. The current Emergency Evacuation Plan is shown in Figure 8. Based on the results of this report one recommendation was made to the current Evacuation Plan. Historically, the Cave Landing Road to Bluff Drive segment leading to Shell Beach has been considered an alternative evacuation route. As stated in the Grand Jury Report, Cave Landing Road is a dirt road that should be upgraded and designated as exit route from Avila Beach to Shell Beach. The estimated cost to upgrade and designate Cave Landing Road as an alternative route is \$6,000,000 to \$10,000,000, largely due to the need to construct a structure to bridge a significant landslide that has closed Cave Landing Road. The Cave Landing Road Feasibility Study is included in Appendix D. The County Office of Emergency Services is responsible for managing the plan shown in Figure 8. # CHAPTER 3 BUILDOUT PROJECTIONS WITHOUT IMPROVEMENTS ### Future (2020) Traffic Future (2020) average daily traffic (ADT) volumes for the Study area were developed from the TP+ model. The updated TP+ model, which includes a modification to the boundaries, refinement of the TAZ structure, and an updated inventory of the available lot, was utilized. Peak hour percentages used to convert the daily weekday segment and intersection volumes to peak hour volumes were calculated based on 2006 daily segment count data. That volume was then converted to a summer peak hour volume for the road segments and the key intersections. The weekday/weekend volumes were established using data collected by the County, which showed the relative difference in traffic volumes at several key locations. From these volumes factors were developed to adjust the daily traffic to reflect the typical summer weekend or holiday traffic volumes. Copies of the model plots, modeling methodologies and socioeconomic data are shown in Appendix E. Table 8 and Figure 9 show the future summer and holiday traffic volumes along with the non-summer volumes. The volume-to-capacity ratios (v/c) and the resulting LOS for each road segment are also presented in Table 8, as well as the density and LOS for the freeway segments and the delay and LOS for the study intersection. The analyses were based on projected future weekday and summer/holiday peak hour traffic volumes. Table 8 shows the Future (2020) Conditions summer/holiday traffic volumes along with the non-summer volumes. The volume-to-capacity ratios (v/c) and the resulting level of service (LOS) for each road segment are also presented. The analyses were based on projected future weekday and summer/holiday peak hour traffic volumes. | TABLE 8: | | | | | | | | |---|------------------------------------|--------|----------------------|--------------------|----------------------|-----------------------|-------------------| | FUTURE (2020) CONDITIO | NS | 1 | Non-Summe
Weekday | er | | mer/Holida
Weekend | ay | | | | | Peak Hour | | Peak Hour | | | | Road | Segment | Volume | v/c ³ | LOS | Volume | v/c ³ | LOS | | Avila Beach Drive | U.S. 101 to San Luis Bay Dr. | 1,164 | 0.58 | A | 1,613 | 0.81 | D | | | San Luis Bay Dr. to San Luis St. | 1,076 | 0.54 | A | 1,491 | 0.75 | C | | | San Luis St. to San Miguel St. | 848 | 0.42 | A | 1,175 | 0.59 | A | | | San Miguel St. to Port San
Luis | 575 | 0.29 | A | 638 | 0.02 | A | | Cave Landing | | 45 | 0.02 | A | 47 | 0.02 | Α | | Front Street | | 175 | 0.09 | A | 242 | 0.12 | Α | | Monte Road | | 69 | 0.03 | A | 77 | 0.04 | A | | Ontario Road | | 1,026 | 0.51 | A | 1,421 | 0.71 | C | | Shell Beach Road | | 426 | 0.21 | A | 474 | 0.24 | A | | San Luis Street | | 156 | 0.08 | A | 208 | 0.10 | A | | San Luis Bay Drive | U.S. 101 to Bay Laurel | 474 | 0.24 | A | 538 | 0.27 | A | | | Bay Laurel. to Avila Beach Dr. | 402 | 0.20 | A | 472 | 0.24 | Α | | See Canyon Road | | 129 | 0.06 | A | 160 | 0.08 | Α | | Squire Canyon Road | | 67 | 0.03 | A | 78 | 0.04 | Α | | Freeway ¹ | Segment | Volume | Density
(pc/mi/h) | LOS | Volume | Density
(pc/mi/h) | LOS | | U.S. 101 | N of San Luis Bay Dr. | 9,568 | | F | 9,990 | | F | | 0.5. 101 | San Luis Bay Dr. to Avila | , | | | , , | | _ | | | Beach Dr. | 8,753 | | F | 9,139 | | F | | | S of Avila Beach Dr. | 9,827 | | F | 10,260 | | F | | | | 1 | Non Summe | er | Summer/Holiday | | | | | Peak Hour | | Weekday
Peak Hour | | Weekend
Peak Hour | | | | | Signal Warrant | | | Delay ⁴ | | | elay ⁴ | | Intersection ² | Met | LO | OS | (secs) | LOS | (secs) | | | Avila Beach at San Luis
Bay ² | | I | 3 | 11.4 | В | | 11.7 | | Avila Beach at San Luis
Street | NO | | | | | | | | o WB Left | | ļ , | A | 9.6 | A | | 9.9 | | o NB Approach | | | C | 19.1 | C | | 22.7 | | Avila Beach at San | | ` | | 17.1 | | | 22.7 | | Miguel Street | YES | | | | | | | | o WB Left | | l A | A | 9.4 | A | | 9.7 | | NB Approach | | | \mathbf{C} | 16.0 | С | | 17.6 | | Avila Beach at First | NO | | | | | | | | Street | NO | | | | | | | | o WB Left | | l A | A | 9.4 | A | | 9.6 | | NB Approach | | (| \mathbb{C} | 16.8 | C | | 18.5 | | San Luis Bay Drive at
U.S. 101 NB ramps | NO | I | 3 | 13.2 | В | | 12.4 | | San Luis Bay Drive at | YES | I | 3 | 10.5 | В | | 10.0 | | U.S. 101 SB ramps
San Luis Bay Drive at | YES | | 3 | 18.8 | C | | 29.6 | | Ontario Road | 120 | 1 | - | 10.0 | | | ->.0 | | | Peak Hour | Non Sum
Weekd
Peak Ho | ny | Summer/Holiday
Weekend
Peak Hour | | | |---|----------------|-----------------------------|--------------------|--|--------------------|--| | | Signal Warrant | | Delay ⁴ | | Delay ⁴ | | | Intersection ² | Met | LOS | (secs) | LOS | (secs) | | | Avila Beach Drive at
U.S. 101 NB ramps | NO | | | | | | | o EB Left | | A | 8.5 | A | 9.3 | | | o SB Approach | | В | 11.2 | В | 12.8 | | | Avila Beach Drive at
U.S. 101 SB on-ramp | NO | | | | | | | o EB Left | | A | 8.7 | A | 9.6 | | | Avila Beach Drive at | | | | | | | | U.S. 101 SB off- | YES | В | 11.3 | В | 15.2 | | | ramp/Shell Beach Road | | | | | | | ¹ LOS calculated using HCS+ Freeway Module No arterial segments are projected to operate at below the County of San Luis Obispo's adopted level of service during either the non-summer peak hour (October through May) weekday (LOS "C") or the summer/holiday (June through September) weekend peak hour (LOS "D"). U.S. 101 is projected to operate at LOS "F" during both the non-summer and summer/holiday weekend peak hours. The signalized intersection of San Luis Bay Drive at Avila Beach Drive is also projected to operate at a LOS "B" during both the non-summer and summer/holiday weekend peak hours. Copies of the freeway and intersection analyses are shown in Appendix F. ### San Luis Bay Drive at U.S. 101 interchange evaluation The evaluation provided in Table 8 for the San Luis Bay Drive at U.S. 101 interchange intersections was based on traffic volumes developed from the Avila Traffic Model; typical representative existing traffic counts were not available due to the
shift in traffic associated with the closure of the San Luis Bay Drive interchange for bridge widening and is intended to provide a hypothetical future level of service analysis of the area. It was assumed that the interchange intersections of San Luis Bay Drive at U.S. 101 NB ramps, San Luis Bay Drive at U.S. 101 SB ramps, and San Luis Bay Drive at Ontario Road were signalized. As shown in Table 8, the three (3) signalized intersections of San Luis Bay Drive at U.S. 101 NB ramps, San Luis Bay Drive at U.S. 101 SB ramps, and San Luis Bay Drive at U.S. 101 Ontario Roads are projected to operate at or above the appropriate level of service standard in both the non-summer and summer/holiday weekend peak hours. Future improvement alternatives at the interchange include but are not limited to: - 1. installation of a roundabout at the intersection of San Luis Bay Drive at Ontario Road - 2. installation of additional intersection capacity (i.e. approach lanes) at the intersection of San Luis Bay Drive at Ontario Road A Project Study Report (PSR) would need to be prepared to explore the possible alternatives to the San Luis Bay interchange area. $^{^{3}}$ V/C = volume-to-capacity ratio ^{--- =} exceeds software parameters ² LOS calculated using HCS+ Unsignalized Module/Synchro 6.0 ^{4 =} Delay per vehicle ### Avila Beach Drive at U.S. 101 interchanges evaluation The evaluation provided in Table 8 for the Avila Beach Drive at U.S. 101 interchange intersections was based on traffic volumes developed from the Avila Traffic Model; typical representative existing traffic counts were not available due to the shift in traffic associated with the closure of the San Luis Bay Drive interchange for bridge widening. It was assumed that the interchange intersections of Avila Beach Drive at U.S. 101 NB ramps and Avila Beach Drive at U.S. 101 SB off-ramp/Shell Beach Road were signalized. Pinnacle Traffic Engineering prepared an assessment of the Avila Beach Drive at U.S. 101 interchange area to evaluate the impacts associated with the temporary closure of San Luis Bay Drive. This assessment was prepared in June 2007. The analysis described four (4) future improvement alternatives: - 1. installation of an all-way stop-control at the intersection of Avila Beach Drive at U.S. 101 SB off-ramp/Shell Beach Road - 2. installation of a traffic signal at the intersection of Avila Beach Drive at U.S. 101 SB off-ramp/Shell Beach Road - 3. installation of a roundabout at the intersection of Avila Beach Drive at U.S. 101 SB off-ramp/Shell Beach Road - 4. installation of additional intersection capacity (i.e. approach lanes) at the intersection of Avila Beach Drive at U.S. 101 SB off-ramp/Shell Beach Road Funding for these alternatives would need to be done through the preparation of a PSR or through the Caltrans encroachment process. ### Signal Warrant Analysis Rural peak hour volume signal warrants were prepared for the unsignalized intersections based on the methodologies in the *California Manual on Uniform Traffic Control Devices (MUTCD) for Streets and Highways*. Based on the rural peak hour volume warrant, the warrant is projected to be met at the Avila Beach Drive at San Miguel Street intersection in the Future (2020) conditions. This warrant analysis is limited to the peak hour volume warrant only and other conditions may exist which meet other traffic signal warrants. Copies of the warrant analyses are included in Appendix G. All future development will need to prepared individual traffic impact studies reflective of the specific developments to determine any impacts the development may # CHAPTER 4 RECOMMENDED IMPROVEMENT PROJECTS As shown in the previous chapter, the intersections of Avila Beach Drive at San Luis Street, Avila Beach Drive at San Miguel Street and Avila Beach Drive at First Street were all projected to have movements projected to operate at or above the adopted level of service standard in the Future (2020) conditions. The intersection of Avila Beach Drive at San Miguel Street is projected to meet the rural peak hour volume warrant. To mitigate the meeting of the rural peak hour volume warrant the following improvements are recommended: Avila Beach Drive at San Miguel Street - o Signalize the intersection - o Coordinate/optimize the intersection Even though the intersections of Avila Beach Drive at San Luis Street and Avila Beach Drive and First Street are not projected to have operational failures or meet the rural peak hour volume warrant in the Future (2020) conditions, the following improvements were also shown: Avila Beach Drive at San Luis Street - o Signalize the intersection - o Coordinate/optimize the intersection signal Avila Beach Drive at First Street - o Signalize the intersection - o Coordinate/optimize the intersection If these improvements are implemented the LOS at the study locations are as shown in Table 9. Copies of the signalized intersection analyses are shown in Appendix H. | | | Non-Si
Weel
Peak | • | Wee | :/Holiday
kend
Hour | |----------------------------------|--------------|------------------------|---------------------------|-----|---------------------------| | Intersection ² | Control Type | LOS | Delay ¹ (secs) | LOS | Delay ¹ (secs) | | Avila Beach at San Luis Bay | Signal | В | 11.4 | В | 11.7 | | Avila Beach at San Luis Street | Signal | A | 5.7 | A | 6.4 | | Avila Beach at San Miguel Street | Signal | A | 9.0 | В | 10.6 | | Avila Beach at First Street | Signal | A | 7.0 | A | 7.8 | ¹ Delay per vehicle With the improvements shown above, all the study intersections are projected to continue to operate at or above the adopted LOS standard in the non-summer weekday peak hour. It should be noted that with the signalization of the Avila Beach at First Street intersection and the close proximity of the intersection with the First Street at San Juan Street intersection queuing issues may be present in both the non-summer and summer/holiday weekend peak hours that would affect traffic on San Juan Street. Based on the LOS shown in Table 9 it is projected that the 95th percentile queue length at the Avila Beach at First Street intersection will be 36 feet in the non-summer peak hour and 42 feet in the summer/holiday weekend peak hour. Currently there is less than a 100 feet distance between the two intersections. ² LOS calculated using Synchro 6.0 As shown in Chapter 3, based on preliminary analysis results the need for signalization and lane additions at intersections at the San Luis Bay Drive at U.S. 101 interchange and Avila Beach Drive at U.S. 101 interchange areas may be needed. Further analysis and the preparation of Project Study Reports at both locations would need to be prepared to identify the exact improvements needed. #### **Recommended Circulation Plan** It is clear from the foregoing evaluation of the future traffic demand that the existing transportation infrastructure will provide a high level of service during typical weekday peak periods. However, during summer weekends and holidays some sub-standard levels of service can be anticipated at intersections located on Avila Beach Drive between San Luis Bay Drive and San Luis Street. Roadway upgrading would be needed to serve future traffic volumes anticipated on summer weekends and holidays. Widening this segment would, however, be disruptive and would potentially have major environmental impacts due to intrusion into San Luis Creek and substantial cuts into the hillside. Widening this roadway would also have high construction costs relative to the number of cars carried. The widening would also result in considerable reserve capacity that, given the limits of future development in the study area, is not likely to be ever used. Moreover, to the extent that there is limited parking supply in town, this capacity would encourage more recreational travelers to drive into the area to seek parking that is not available either in the town of Avila Beach or at the Harbor. For the above reasons, widening Avila Beach Drive to four lanes is not recommended. Therefore, it is recommended that the issues associated with future summer time traffic congestion should be addressed using transportation system management strategies. Three capital improvements to the area roadways are recommended for implementation in the future. - 1. Upgrade the two interchanges to improve traffic operations and accommodate future traffic volumes - 2. Widen U.S. 101 to accommodate high occupancy vehicle(HOV) lanes - 3. Install traffic signals as warranted at key intersections ## CHAPTER 5 ALTERNATIVE TRANSPORTATION MODES #### **Transportation System Management** Over the past 25 years, transportation systems management (TSM) programs have been established in many areas to help reduce traffic and parking congestion while avoiding the need for high capital cost improvements. Most TSM programs are oriented toward commute travel, with policies and promotional activities implemented at major employment sites, downtown areas, or on regional highways with large volumes of commute trips. TSM programs can involve a wide variety of policy actions, promotional activities, and physical improvements. The Avila area, as primarily a recreational and relatively low-density residential area, is not well suited to many of the standard TSM activities implemented elsewhere. Its one major employer, the Diablo Canyon Nuclear Power Plant, is large enough to warrant an on-site TSM program. Its residential based commute travel is relatively low and directionally counters the peak flow of traffic into or out of the area. The focus of TSM strategies would therefore need to address recreational travel to and from the beach. Since this is of limited duration during summer weekends and holidays, TSM measures should be considered to reduce auto trips into the town and associated parking congestion. The following TSM measures can be used: - Public transit service improvements -
Intercept parking with shuttle transit service - Ride-sharing incentives - Bicycle/transit facilities - Parking Management (as an alternative to constructing new parking facilities) - Travel demand management (e.g. flexible work hours to reduce peak period travel) - Spot roadway improvements to remove localized bottlenecks (e.g. channelization or signalization at intersections) In addition, traffic management at all special events should be handled through the County permit process. As part of that process is the requirement for the preparation of a traffic management plan for each event. The County of San Luis Obispo should continue to collect annual counts during the month of May and augment with a summer weekend count. #### **Public Transit Improvements** Because the study area is a relatively isolated location and has a limited resident population base, it is not likely that public transit could play a major role in reducing traffic levels during typical weekdays. However, during summer weekends or holidays improving transit service will in the future play a key role in reducing peak traffic to and from the beach areas in Avila. It is recommended that, as parking becomes more difficult in the town area a regional transit strategy be implemented. Operation of a direct route on weekends during the summer season, with service from the Five Cities area directly into Avila Beach and then on to downtown San Luis Obispo will be warranted. This service should be operated between 10 A.M. and 6 P.M. for approximately 32 weekend days per summer. In addition to the summer schedule, this service should be considered for any special event where the demand for parking is projected to exceed the supply of stalls in town. #### **Intercept Parking and Shuttle Service** Long range, the concept of providing intercept parking facilities near U.S. 101 with a shuttle bus into the beach areas is warranted for several reasons. As noted previously, the growth in demand for use of beach facilities is projected to be greater than the anticipated parking supply. Parking in Avila Beach is already at or near capacity during summer weekends and holidays. Once the available parking is taken, any excess demand can only be served by off-site parking. Avila Beach has only two entry points along U.S. 101 and all visitors must use these for access. This makes it relatively easy to sign and route drivers to intercept parking facilities; this is especially true for out-of-town visitors. Remote parking would be substantially easier and less costly to develop than parking in the town of Avila and the Harbor areas. In the long term, there is an opportunity to also establish these intercept parking facilities as park-and-ride lots for weekday commuters into San Luis Obispo. Generally, they are most likely to attract riders when parking and traffic congestion is severe, and the shuttle service itself is convenient and low in cost. As noted above, some of the necessary conditions will exist in the future in the Avila area. Assuming the shuttle only operates on summer weekends and that existing SLORTA, SLO Transit or other available buses are used for the service, costs of the shuttle operation would be relatively small. As described previously in this report, it is estimated that with development of the planned land uses in the Town of Avila parking demand will exceed the supply by about 200 stalls. Two locations are suggested for development of the needed parking stalls. Use of the existing parking area at PG & E visitor center on Ontario Road would greatly minimize the capital cost associated with parking lot development. This 75 stall lot could be used to provide an intercept facility for traffic arriving from the north. A lease agreement for use of the lot during the summer and holidays would have to be completed between the County and P. G. & E. The second location is near the Avila Beach Drive interchange. A 100-125 stall lot would need to be constructed at this location to intercept traffic from the south. A shuttle bus would be used to transport riders from the intercept lots to the town, beaches and Harbor. The shuttle bus would also operate from 10 A.M. until 6 P.M. Changeable message signs would be constructed at each of the interchanges to inform travelers of alternative parking options whenever the parking lots in town were nearing capacity. This shuttle system should also be used for any special event where the demand for parking is projected to exceed the supply of stalls in town. As part of the development of the park-and-ride lots message signs would be installed at the freeway off ramps to inform motorists that the parking in town was full and that the travelers should use the intercept lots. These message signs could also be used during special events at the Harbor or in Town to inform visitors of parking availability. Alternative parking options also exist for consideration. These include augmentation of parking within the core of the town. This could be accomplished through the purchase of additional land adjoining the Harbor District lot on First Street. A second option is to develop a new lot within the town. One option that has recently been proposed is to use the Unocal property along Avila Beach Drive just west of Cave Landing Road. This property could be developed to provide for intercept parking and would need to be tied to a shuttle bus into town. Additional road improvements would also be needed along Avila Beach Drive to accommodate both right turns and left turns into the site and to safely address the sight distance along the curve. The goal of these options is to add the 200 stalls necessary to eliminate the shortfall as close to town as possible. The difficulty with this strategy is that the traffic accessing the community would continue to use the critical segment of Avila Beach Drive between San Luis Bay Drive and San Luis Street. The option to expand the Harbor lot would also use very valuable land and could be quite expensive. The Unocal lot option would necessitate additional road improvements and operation of a shuttle bus. #### PG & E Diablo Canyon Power Plant Shuttle Service The PG&E Diablo Canyon Power Plant is a major contributor to the total number of daily vehicle trips within the Avila Beach study area. The Plant employs an estimated 1,300 employees, approximately 900 of which travel to and from the facility on a typical weekday. In an effort to curtail the need for additional road capacity on Avila Beach Drive in the future, solutions which focus on removing traffic from the roadway may provide to be a viable alternative to increasing roadway capacity or widening. By moving employee trips from automobiles and concentrating them in shuttle buses, additional roadway capacity will be made available at a relatively low cost. One approach focuses on employer-based shuttle programs which allow for parking at a distance with service to and from an intended destination. The following outlines a service description for a proposed PG&E Employee Shuttle: Operator: PG&E Equipment: 1 40-passenger diesel-fueled shuttle bus Service: 4 round-trips per day (2 morning runs & 2 evening runs) between a Park & Ride Lot to be located near San Luis Bay Drive and SR101, and the Diablo Canyon facility <u>Headways</u>: 1 hour per run Days of Operation: Monday thru Friday Cost of Operation: Approximately \$39,000 annually By operating a limited employee shuttle service (as outlined above), PG&E can help to reduce traffic demands within the Avila area by removing approximately 80 peak hour vehicle trips per weekday from the roadway network. These 80 automobile trips removed from the roadways could then be used by new development without requiring road widening. Additional buses could be added at the park & ride to shift more PG&E employees to the shuttle. Each bus would free up more capacity to be used by new development. This relatively low-cost solution also provides a considerable cost savings to participating employees through a reduction in vehicle operating and fuel costs; the annual cost of operating the shuttle is approximately \$245,544 less than the annual cost of operating 80 employee vehicles along the same route. In other words, the shuttle would operate at an annual cost of approximately \$483 per employee, but it would cost an employee approximately \$3,552 annually to operate his/her own private vehicle along the same route. Operating costs include gas, oil, maintenance and tires. All calculations were based on an assumed gas/diesel price of \$3.50 per gallon. In addition to capacity and operating cost savings, a PG&E employee shuttle would also serve to reduce traffic related emissions by approximately 838,944 lbs per year; the shuttle service (as outlined above) would contribute approximately 20,736 lbs of carbon dioxide per year, while the 80 employee vehicles operating along the same route would contribute a combined total of approximately 859,680 lbs. All calculations were derived from the Travel Matters Emissions Calculator - a project sponsored by the Federal Transit Administration, in cooperation with the Transportation Research Board and the American Public Transportation Association (www.travelmatters.org). The calculator converts "other" emissions (methane and nitrous oxide) into equivalent amounts of carbon dioxide. #### **Bicycle Provisions** Bicycling should be encouraged, as an alternative means of access and the provision of bike lanes on Avila Beach Drive and San Luis Bay Drive should be included as an element of any roadway widening. The completion of the bicycle path from San Luis Bay Drive to San Miguel Street along San Luis Creek will greatly enhance bicycling as an alternative mode of travel within the study area. While it is not anticipated that a significant shift in traffic demand will be shifted to bicycles, this alternative mode can play a role in
increasing the accessibility to and from the study area. Furthermore, the completion of the bike path will encourage the relocation of bicyclists from the congested segment of Avila Beach Drive between San Luis Bay Drive and San Luis Street. One option available to would have visitors travel to the area via automobile and park in one of the intercept parking lots, using bicycles and the bike trail to travel into the beach area. This would also assist in relieving some traffic demand on Avila Beach Drive and San Luis Bay Drive. It will be important to provide and encourage use of alternative modes for beach area access during summer weekends and holidays. It is recommended that an aggressive TSM program be established for the area. Key elements for the program that should be considered for implementation are intercept parking with shuttle service, public transit service improvements and bicycle facilities. Policies should also be established to limit public parking supply increases in the future. The primary objective of the TSM program should be to effectively and efficiently manage traffic and parking in the future. The following are the recommended TSM programs: - 1. Initiate direct bus service linking San Luis Obispo-Avila-Pismo Beach exists with Avila Trolley - 2. *Implement intercept park and ride lots with shuttle bus service* - 3. Improve bicycle facilities and routes Bob Jones Bike Trail - 4. Implement U.S. 101 reader boards directing to intercept parking - 5. Implement a County permit process for all special events - 6. Establish a parking district for Avila Beach for on-going improvements - 7. Evaluate the potential for one-way traffic on streets in the town of Avila Beach Improvements recommended for implementation are shown in Figure 10. Page 35 # CHAPTER 6 IMPROVEMENT COST ESTIMATES AND FUNDING MECHANISMS The previous chapter identified a list of street improvement projects (listed by street segments) needed to facilitate the planned land uses and maintain the desired level of service. The purpose of this section is to provide an overview of the costs of each of the planned projects. The cost estimates provided for the planned street projects are intended to be "order-of-magnitude" estimates. For the purposes of these estimates, costs have been based on typical costs and have been defined from current local information on construction costs supplied by the County of San Luis Obispo. More detailed engineering studies would be needed to refine these cost estimates for project budgeting purposes. Table 10 delineates the costs of the planned projects described in the previous chapter along with suggested funding sources for each street segment. Total costs of the Avila area improvements (including traffic signals and special studies) are currently estimated at approximately \$25.6 million for build-out. Copies of the cost estimate calculations are included in Appendix I. #### **Funding Analysis** This section of the study will address the long-term financial plan for implementing the planned street system improvements. Under California case law, public agencies (cities and counties) must adopt circulation plans, which are fully funded, or can be fully funded through actions controlled by the adopting agency. Therefore, the financial plan in this report has been developed to provide a series of funding options for consideration during the draft review period. The result of that review will be the establishment of a funding program that is "in-balance". #### Revenue Surplus/Shortfall The calculation of the revenue surplus or shortfall begins with the identification of the projects that are needed to address current capacity problems in the study area. California court cases stipulate that future development cannot be held financially responsible for existing capacity problems. Therefore, the first priority for use of the existing revenues is to address current congestion problems. Based on the existing level of service analysis Avila currently has no projects that fall below the County's level of service standard. Therefore no remedial projects need to be addressed using existing revenues. Therefore, all funds from existing sources are available for construction of the future planned projects outlined above. The following shows the calculation of the street revenue shortfall for the Avila plan. | Table 10: | | | | | | | | | |---|---------------|--------------------------|---------------------------|--------------------|-----------------------------|--------------------------------|--------------------------|---------------------| | ROAD IMPROVEMENT COST ESTIMATES | | | Less | | | | | | | Road | Cost Estimate | Existing
Deficiencies | Other Sources | Through
Traffic | Funding From
Impact Fees | Actual
Construction
Cost | Regional /
Urban | Expected Completion | | SAN LUIS BAY DRIVE | | | | | | | | | | SL Creek Bridge Widening | | | \$ 5,418,106 ² | | \$ 1,517,314 | \$7,083,907 | \$ 148,486 ¹³ | Complete | | Widening for Bike Lanes | \$822,824 | | \$ 822,824 3 | | | | | July-20 | | AVILA BEACH DRIVE | | | | | | | | | | Widening for Bike Lanes | \$2,250,838 | | \$2,250,838 ³ | | | | | July-20 | | Signal - San Miguel St. | \$240,500 | | | | \$ 240,500 | | | July-15 | | Signal - San Luis St. | \$227,500 | | | | \$ 227,500 | | | July-10 | | Signal - First St. | \$260,000 | | \$ 260,000 6 | | | | | July-09 | | Pedestrian Walkway - Port San Luis to Cal Poly
Pier – Study only | \$300,000 | | \$ 300,000 6 | | | | | July - 20 | | Construct 100 Stall Intercept Parking Lot | \$1,093,178 | | \$ 1,093,178 4 | | | | | July-20 | | ONTARIO ROAD | | | | | | | | | | Widening for Class II Bike Lanes from Bob Jones
Trail to Avila Beach Drive | | | \$ 650,600 3 | | | \$650,600 | | Complete | | U.S. 101 | | | | | | | | | | Modify Avila Interchange | \$7,920,000 | | \$ 3,960,000 ⁵ | | \$ 3,960,000 | | | July-25 | | S. L. Bay Drive @ U.S. 101 Bridge Widening & S. L Bay Drive Ramp Relocation | \$4,000,000 | | \$ 2,000,000 5 | | \$ 2,000,000 | | | July-20 | | San Luis Bay Drive Interchange Project Study
Report | \$250,000 | | | | \$ 250,000 | | | June - 12 | | CAVE LANDING BIKE TRAIL | | | | | | | | | | Construct Trail between Shell Beach and Avila Beach | \$379,000 | | \$ 379,000 1 | | | | | July-20 | 2007 Avila Valley Circulation Study Table 10: ROAD IMPROVEMENT COST ESTIMATES | | | | Less | | | Asteral | | | |--|---------------|--------------------------|------------------|--------------------|-----------------------------|--------------------------------|---------------------|------------------------| | Road | Cost Estimate | Existing
Deficiencies | Other Sources | Through
Traffic | Funding From
Impact Fees | Actual
Construction
Cost | Regional /
Urban | Expected
Completion | | BOB JONES BIKE TRAIL | | | | | | | | | | Construct Bike Path between Avila Beach
Drive/San Miguel to Avila Park | \$336,000 | | \$ 336,000 7,8 | | | | | July-10 | | Construct Bike Path between San Luis Obispo
Land Conservancy Octagon Barn to Ontario
Road Staging Area | \$2,100,000 | | \$ 2,100,000 11, | | | | | July-15 | Sub-totals \$ 20,179,840 \$ 19,570,546 \$ 8,195,314 \$7,734,507 \$148,486 Previously expended \$ (1,517,314) Total Cost \$ 26,397,032 #### Notes: 1) California Department of Fish and Game Grant (CDFG) (programmed) - 2) Federal Bridge Program - 3) State Bicycle Transportation Account or SLOCOG RSHA funds - 4) assumes\$100,000 from County Parking In-Lieu Fee Program and balance from Air Pollution Control District funding (potential) - 5) Regional Funding - 6) PG&E Diablo Canyon Steam Generator replacement mitigation account - 7) CDFG \$300,000 - 8) Unocal \$36,000 - 9) CDFG \$400,000 - 10) Regional Funding \$300,000 - 11) TEA \$1,000,000 - 12) SAFETEA-LU \$400,000 - 13) SLO COG #### Calculation of Revenue Surplus/Shortfall | Projected Revenue for Capital Projects | | |---|---------------| | Regional Funds | \$ 6,408,486 | | California Department of Fish and Game | \$ 1,079,000 | | State Bicycle Transportation Account | \$ 3,724,262 | | Federal Highway Bridge Program | \$ 5,418,106 | | Air Pollution Control District | \$ 993,178 | | County Parking In-lieu Fee Program | \$ 100,000 | | PG&E Diablo Canyon Steam Generator replacement mitigation account | \$ 560,000 | | Unocal | \$ 36,000 | | TEA | \$ 1,000,000 | | SAFETEA-LU | \$ 400,000 | | County Road Impact Fees | \$ 112,343 | | Balance Available for Capital Projects | \$19,831,375 | | Estimated Project Costs | -\$26,397,032 | | Shortfall | \$ 6,565,657 | #### **Regional Funding** Regional funding sources, such as sales tax revenue, vehicle license fee revenue, or gas tax revenue or increase is anticipated to generate a substantial level of funding over the life of the Avila circulation plan. All told regional funding sources are projected to supply approximately \$6,408,486. Primarily this funding will be concentrated on five projects in and around the two interchanges. Regional funding sources are expected to pay for approximately half of the improvements to the Avila Beach Drive interchange. In addition it is anticipated that this funding source will contribute approximately \$2,000,000 for the San Luis Bay Drive at U.S. 101 bridge widening and San Luis Bay Drive ramp relocation. #### California Department of Fish and Game The California Department of Fish and Game, as part of the settlement of the Unocal environmental restoration program, has funded a number of projects throughout the Avila area. One bicycle project is included in the approved program. The completion of the Cave Landing Bike Trail between Shell Beach and Avila Beach and the Bob Jones Bike Trail between Avila Beach
Drive/San Miguel to Avila Park and between San Luis Obispo Land Conservancy Octagon Barn to the Ontario Road Staging Area is to be funded by this grant which totals \$1,079,000. #### Federal Highway Bridge Program (HBP) The County of San Luis Obispo has received a grant from the San Luis Obispo Council of Governments for the widening of the San Luis Bay Drive Bridge at Avila Beach Drive totaling \$5,418,106. The balance of the project was funded by the County's Road Impact Fee program and San Luis Obispo COG funds. #### **Air Pollution Control District (APCD)** Historically, the APCD has been a source of funding for a number of air quality related projects and should be pursued as a potential funding source. #### **County Parking In-Lieu Fee Program** Historically the County has established a parking in-lieu fee program for the town of Avila. This program has allowed commercial and office development to pay a fee in-lieu of providing parking on-site. This program will be especially helpful as reconstruction of the businesses takes place. It is assumed that this program will generate approximately \$100,000, which will be used in the development of the Avila Beach Drive park and ride lot. It is estimated there is a balance of approximately \$69,121 in the account. #### PG&E Diablo Canyon Steam Generator Mitigation Funds The County has received funds in the amounts of \$300,000 to conduct a study for a pedestrian walkway from Port San Luis to the Unocal Pier and \$260,000 for the installation of a traffic signal at Avila Beach Drive at First Street from the PG&E Diablo Canyon Steam Generator mitigation funds. #### **Unocal Funds** County Parks has \$36,000 in funds committed from Unocal. These funds will be used for the construction of the Bob Jones Pathway from Avila Beach Drive/San Miguel Street to Avila Park. #### **TEA funds** The County, through SLOCOG, has received \$1,000,000 in TEA funds for the construction of the Bob Jones Pathway section from the San Luis Obispo Land Conservancy Octagon Barn to the Ontario Road Staging Area. The balance of the project is to be funded using funds from the California Department of Fish and Game, regional funds and SAFETEA-LU funds. #### **SAFETEA-LU funds** The County has received a grant in the amount of \$400,000 from SAFETEA-LU funds for construction of the Bob Jones Pathway section from the San Luis Obispo Land Conservancy Octagon Barn to the Ontario Road Staging Area. The balance of the project is to be funded using funds from the California Department of Fish and Game and TEA funds. ### **County Road Impact Fees** The County's current Avila Road Improvement Fee program was established in Fiscal Year 1990/91. At the end of fiscal year 2006/2007 there was approximately \$112,343 in the account. The County has expended funds from this account for the reconstruction of the San Luis Bay Drive bridge widening. The current fee is \$1,864 per unit. The non-fee revenue for the projected road improvement cost totals \$26,397,032 under current County policy. The remaining road improvement cost balance of \$8,195,314 is to be funded through the road impact fee program. \$1,517,314 has been collected and expended to fund the San Luis Creek Bridge widening project, leaving a balance of \$6,678,000. The road impact program has an approximate balance of \$112,343 balance, leaving the unfunded balance at approximately \$6,565,657. Based on this unfunded balance, the Avila Road Improvement Fee will be updated using the following method. The method for calculation of the fee selected by the County allocates all costs associated with the improvements equally through additional traffic generated from the new land uses. This method allows for a more equal distribution of allocated costs and assists in the ease of use. Using the traffic model it was determined that approximately 1,584 additional peak hour trips will be added as a result of the build-out of the planned land uses. Dividing the unfunded balance or shortfall of \$6,565,657 by 1,584 yields a cost of \$4146.05 per new peak hour trip. The Avila area is expected to add 270 new homes under the current land plan. Those single-family homes are estimated to generate approximately 1.01 peak hour trips per dwelling unit. This would translate into a fee per unit of \$4,187.51 (1.01 peak hour trips x \$4,146.05). #### **Recommended Funding Plan** Based on the foregoing review of potential funding sources in San Luis Obispo County, funding options for the Avila area improvements are relatively limited. State and Federal funding sources for transportation improvements are becoming increasingly scarce, and are not keeping up with inflation. One promising source at the County level is the local sales tax initiative process. However, revenues from this source, should it be approved by the voters at some time in the future, would most likely be earmarked primarily for regional improvements such as widening of Route 101 and associated freeway interchange improvements in the county. It should therefore not be counted on for generating any major share of the Avila area local improvement costs. Based on the available funding sources and the options for additional funding as summarized above, the recommended funding plan for the Avila Circulation Study is as follows: - 1) Maximize existing revenues from local, county, state and federal sources with emphasis on Air Pollution Control District funds along with State and Regional Transportation Improvement Program funds. - 2) Continue the current County policy of requiring new development to construct the appropriate local street improvements as part of their project. - *3) Temporary event venues should contribute to solutions for event impacts.* - *A)* Regularly update the Road Impact Fee to fund the identified projects. - 5) After the shuttle demonstration program is completed, pursue Transportation Development Act through SLOCOG funding for implementation of the summer park-and-ride and intercity transit service program. - 6) Review each of the existing funding sources and the road impact fees every two years for changes in local, county, state and federal revenues, as well as changes in the project list and estimated project costs. Modify revenues as necessary. - 7) At such time as the parking demand in the town of Avila consistently exceeds the supply, actively begin to develop satellite parking, plus implement the park-and-ride shuttle and intercity bus programs. In conjunction with these projects, review the potential for the introduction of paid parking in the town and Port areas. The capital improvement funding program outlined here does not address widening of State Route 101 through the Avila Study Area, although this appears to be a high priority need. It is assumed that freeway widening would be funded from regional and state sources. Given the critical nature of the roadway, the Route 101 improvements should be a high priority project to list in the Regional Transportation Plan. All future development will need to prepared individual traffic impact studies reflective of the specific developments to determine any impacts the development may # APPENDIX A EXISTING COUNT DATA Site Name EB AVILA BEACH BWT HWY 101 & SAN LUIS BAY DR Jurisdiction Study Type Volume (ch1) Location Code 8968 Direction East Date 8/11/2006 Real Time 15:23 Start Date 8/11/2006 Start Time 16:00 00:15 Sample Time 57 Operator Number Machine Number 2 Friday, August 11, 2006 | | | 8/1 | 1/2006 | | | | 8/12/ | 2006 | | | | 8/1 | 13/2006 | | | | | 8/14 | /2006 | | | |-------|---------|---------|--------|-------------|-------|---------|-----------|---------|-----------|-------|---------|---------|---------|---------------|---|-------|-----------|----------|-------|---------|---------| | HR | HR | | | | HR | HR | | | | HR | HR | | | | _ | HR | HR | | | | | | Begin | Total | 00-15 | 15-30 | 30-45 45-00 | Begin | Total | 00-15 1 | 5-30 30 | -45 45-00 | Begin | Total | 00-15 | 15-30 3 | 0-45 45-00 | | Begin | Total | 00-15 | 15-30 | 30-45 4 | 45-00 | | 00 | | | | | 00 | 97 | 34 | 15 | 32 16 | 00 | 45 | 15 | 14 | 11 5 | | 00 | 21 | 3 | 10 | 5 | 3 | | 01 | | | | | 01 | 38 | 13 | 5 | 7 13 | 01 | 43 | 14 | 12 | 10 7 | | 01 | 7 | 4 | 1 | 1 | 1 | | 02 | | | | | 02 | 26 | 6 | 11 | 4 5 | 02 | 17 | 4 | 2 | 8 3 | | 02 | 4 | 3 | 1 | 0 | 0 | | 03 | | | | | 03 | 11 | 5 | 3 | 2 1 | 03 | 12 | 3 | 3 | 4 2 | | 03 | 3 | 2 | 0 | 0 | 1 | | 04 | | | | | 04 | 5 | 0 | 2 | 1 2 | 04 | 5 | 2 | 2 | 1 (| | 04 | 5 | 0 | 3 | 1 | 1 | | 05 | | | | | 05 | 4 | 0 | 1 | 2 1 | 05 | 11 | 4 | 2 | 2 3 | | 05 | 19 | 5 | 3 | 5 | 6 | | 06 | | | | | 06 | 34 | 5 | 5 | 7 17 | 06 | 29 | 5 | 4 | 9 11 | | 06 | 47 | 6 | 6 | 13 | 22 | | 07 | | | | | 07 | 78 | 14 | 18 | 21 25 | 07 | 74 | 20 | 19 | 21 14 | | 07 | 94 | 21 | 24 | 23 | 26 | | 80 | | | | | 08 | 128 | 29 | 31 | 32 36 | 08 | 104 | 10 | 23 | 32 39 | | 80 | 127 | 23 | 32 | 34 | 38 | | 09 | | | | | 09 | 175 | 32 | 46 | 54 43 | 09 | 183 | 38 | 41 | 58 46 | | 09 | 158 | 31 | 44 | 39 | 44 | | 10 | | | | | 10 | 269 | 59 | 61 | 67 82 | 10 | 309 | 66 | 85 | 64 94 | | 10 | 249 | 56 | 51 | 58 | 84 | | 11 | | | | | 11 | 355 | 76 | 91 | 99 89 | 11 | 413 | 96 | 109 | 118 90 | | 11 | 302 | 80 | 61 | 71 | 90 | | 12 | | | | | 12 | 415 | 88 | | 116 109 | | 477 | 119 | | 139 118 | | 12 | 323 | 96 | 62 | 65 | 100 | | 13 | | | | | 13 | 452 | 109 | | 113 125 | | 507 | | | 132 110 | | 13 | 383 | 109 | 91 | 102 | 81 | | 14 | | | | | 14 | 601 | 154 | | 149 145 | 14 | 650 | | | 171 162 | | 14 | 404 | 101 | 96 | 105 | 102 | | 15 | | | | | 15 | 680 | 147 | 181 | 181 171 | 15 | 654 | | | 163 183 | | 15 | 466 | 101 | 116 | 126 | 123 | | 16 | 705 | | | 197 186 | 16 | 674 | 160 | | 181 155 | | 660 | 157 | 171 | 179 153 | | 16 | 517 | 112 | 134 | 141 | 130 | | 17 | 703 | 157 | 231 | 184 131 | 17 | 615 | 162 | | 134 158 | 17 | 553 | | | 109 124 | | 17 | 443 | 122 | 117 | 120 | 84 | | 18 | 469 | 132 | 104 | 134 99 | 18 | 463 | 139 | | 111 101 |
18 | 445 | 145 | | 94 85 | | 18 | 288 | 86 | 69 | 70 | 63 | | 19 | 475 | 140 | 107 | 117 111 | 19 | 365 | 104 | 117 | 88 56 | | 303 | | | 89 73 | | 19 | 250 | 74 | 52 | 63 | 61 | | 20 | 414 | | 132 | 92 86 | 20 | 270 | 67 | 66 | 72 65 | | 213 | | _ | 51 50 | | 20 | 165 | 44 | 41 | 52 | 28 | | 21 | 205 | | 52 | 46 34 | 21 | 229 | 45 | 65 | 66 53 | | 143 | | | 35 30 | | 21 | 114 | 33 | 33 | 25 | 23 | | 22 | 135 | | 29 | 27 33 | 22 | 146 | 42 | 21 | 26 57 | | 97 | | | 21 18 | | 22 | 77 | 20 | 18 | 17 | 22 | | 23 | 134 | 43 | 38 | 28 25 | 23 | 145 | 39 | 37 | 42 27 | 23 | 44 | 19 | 14 | 8 3 | | 23 | 47 | 15 | 13 | 13 | 6 | | | 3240 | Total | | | | 6275 | Total | | | | 5991 | Total | | | | | 4513 | otal | AM Peak | | | | | AM Peak | | | 11:00 | | AM Peak | | | 10:45 | | | AM Peak H | | | | 11:00 | | | AM Peak | | | | | AM Peak | | | 355 | | AM Peak | | | 417 | | | AM Peak H | our Tota | al | | 302 | | | AM Peak | | | | | AM Peak | | | 89.65 | | AM Peak | | | 88.35 | | | AM Peak H | | | | 83.89 % | | | PM Peak | | | 16:30 | | PM Peak | | | 15:15 | | PM Peak | | | 15:45 | | | PM Peak H | | | | 16:15 | | | PM Peak | Hour To | tal | 771 | | PM Peak | | | 693 | | PM Peak | Hour To | otal | 690 | | | PM Peak H | | | | 527 | | | PM Peak | Hour Fa | ctor | 83.44 | % | PM Peak | Hour Fact | or | 95.72 | % | PM Peak | Hour Fa | actor | 94.26 | % | | PM Peak H | our Fac | tor | , | 93.44 % | Site Name EB AVILA BEACH BWT HWY 101 & SAN LUIS BAY DR Jurisdiction Study Type Volume (ch1) Location Code 8968 East Direction Date 8/11/2006 Real Time 15:23 Start Date 8/11/2006 Start Time 16:00 00:15 Sample Time Operator Number 57 Machine Number 2 Tuesday, August 15, 2006 | | 8/15/2006 | | 8/16/2006 | | | 8/17/2006 | | | 8/18/2006 | | |-------|-------------------------------|-------|---------------------|-------------|----------|---------------------|------------|-------|---------------------|-------------| | HR | HR | HR | HR | | HR | HR | | HR | HR | | | Begin | Total 00-15 15-30 30-45 45-00 | Begin | Total 00-15 15-30 | 30-45 45-00 | Begin | Total 00-15 15-30 3 | 0-45 45-00 | Begin | Total 00-15 15-30 | 30-45 45-00 | | 00 | 14 3 4 2 5 | 00 | 20 5 9 | 3 3 | 00 | 39 12 13 | 8 6 | 00 | 36 15 12 | 4 5 | | 01 | 6 2 1 1 2 | 01 | 7 1 2 | 2 2 | 01 | 18 4 3 | 4 7 | 01 | 8 0 5 | 2 1 | | 02 | 7 1 3 1 2 | 02 | 11 2 3 | 2 4 | 02 | 9 2 2 | 3 2 | 02 | 10 3 5 | 2 0 | | 03 | 13 5 0 2 6 | 03 | 4 1 1 | 1 1 | 03 | 4 0 1 | 0 3 | 03 | 4 2 1 | 0 1 | | 04 | 4 0 0 0 4 | 04 | 2 0 0 | 1 1 | 04 | 3 2 0 | 0 1 | 04 | 12 1 6 | 1 4 | | 05 | 27 5 4 6 12 | 05 | 16 2 3 | 4 7 | 05 | 15 2 5 | 6 2 | 05 | 18 2 6 | 4 6 | | 06 | 42 8 8 8 18 | 06 | 44 12 9 | 11 12 | 06 | 33 6 9 | 9 9 | 06 | 39 4 11 | 9 15 | | 07 | 86 15 16 33 22 | 07 | 88 26 15 | 23 24 | 07 | 79 22 16 | 23 18 | 07 | 81 21 18 | | | 80 | 133 29 28 42 34 | 08 | 133 34 27 | 35 37 | 08 | 119 29 28 | 37 25 | 08 | 126 21 27 | 32 46 | | 09 | 154 32 43 37 42 | 09 | 156 32 34 | 38 52 | 09 | 145 26 41 | 38 40 | 09 | 166 34 41 | 41 50 | | 10 | 270 71 63 60 76 | 10 | 252 62 54 | 66 70 | 10 | 256 59 60 | 63 74 | 10 | 286 68 59 | 69 90 | | 11 | 324 66 95 88 75 | 11 | 273 60 59 | 85 69 | 11 | 315 79 81 | 67 88 | 11 | 324 68 93 | 73 90 | | 12 | 367 91 90 102 84 | 12 | 368 104 86 | 89 89 | 12 | 313 70 82 | 83 78 | 12 | 345 84 90 | 87 84 | | 13 | 410 116 92 100 102 | 13 | 350 81 81 | 91 97 | 13 | 397 99 103 | 103 92 | 13 | 392 97 103 | 101 91 | | 14 | 407 120 79 105 103 | 14 | 391 88 107 | 87 109 | 14 | 393 117 89 | 95 92 | 14 | 406 98 85 | 117 106 | | 15 | 499 126 126 132 115 | 15 | 469 114 107 | 146 102 | 15 | 446 97 111 | 122 116 | 15 | 504 125 118 | 139 122 | | 16 | 607 176 119 150 162 | 16 | 645 149 135 | 183 178 | 16 | 539 121 107 | 150 161 | 16 | 623 155 134 | 169 165 | | 17 | 706 178 257 153 118 | 17 | 616 144 201 | 141 130 | 17 | 597 148 198 | 130 121 | 17 | 673 169 208 | 164 132 | | 18 | 312 91 73 85 63 | 18 | 311 96 84 | 77 54 | 18 | 291 94 72 | 65 60 | 18 | 432 134 86 | 99 113 | | 19 | 240 71 65 56 48 | 19 | 242 70 64 | 52 56 | 19 | 262 67 78 | 65 52 | 19 | 468 135 118 | 106 109 | | 20 | 176 60 52 33 31 | 20 | 210 66 64 | 43 37 | 20 | 159 48 28 | 44 39 | 20 | 390 111 126 | 73 80 | | 21 | 134 39 34 37 24 | 21 | 124 30 33 | 36 25 | 21 | 132 32 54 | 30 16 | 21 | 211 50 75 | 49 37 | | 22 | 69 25 10 13 21 | 22 | 96 28 21 | 24 23 | 22 | 109 20 27 | 35 27 | 22 | 131 48 25 | | | 23 | 63 27 18 10 8 | 23 | 65 24 14 | 16 11 | 23 | 68 22 18 | 17 11 | 23 | 113 46 24 | 19 24 | | | 5070 Total | | 4893 Total | | | 4741 Total | | | 5798 Total | AM Peak Hour Start 10:45 | | AM Peak Hour Start | 10:45 | | AM Peak Hour Start | 11:00 | | AM Peak Hour Start | 10:45 | | | AM Peak Hour Total 325 | | AM Peak Hour Total | 274 | | AM Peak Hour Total | 315 | | AM Peak Hour Total | 324 | | | AM Peak Hour Factor 85.53 | % | AM Peak Hour Factor | 80.59 % | . | AM Peak Hour Factor | 89.49 % | | AM Peak Hour Factor | 87.10 % | | | PM Peak Hour Start 16:45 | | PM Peak Hour Start | 16:30 | | PM Peak Hour Start | 16:30 | | PM Peak Hour Start | 16:30 | | | PM Peak Hour Total 750 | | PM Peak Hour Total | 706 | | PM Peak Hour Total | 657 | | PM Peak Hour Total | 711 | | | PM Peak Hour Factor 72.96 | % | PM Peak Hour Factor | 87.81 % | | PM Peak Hour Factor | 82.95 % | | PM Peak Hour Factor | 85.46 % | Site Name EB AVILA BEACH BWT HWY 101 & SAN LUIS BAY DR Jurisdiction Study Type Volume (ch1) Location Code 8968 East Direction Date 8/11/2006 Real Time 15:23 Start Date 8/11/2006 Start Time 16:00 Sample Time 00:15 Operator Number 57 Machine Number 2 Saturday, August 19, 2006 | | | 8/1 | 9/2006 | | | |-------|-------|-------|--------|-------|-------| | HR | HR | | | | | | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | | 00 | 57 | 15 | 14 | 12 | 16 | | 01 | 34 | 12 | 4 | 6 | 12 | | 02 | 23 | 5 | 12 | 4 | 2 | | 03 | 10 | 1 | 2 | 2 | 5 | | 04 | 6 | 3 | 0 | 1 | 2 | | 05 | 12 | 2 | 3 | 4 | 3 | | 06 | 40 | 4 | 6 | 14 | 16 | | 07 | 60 | 19 | 14 | 13 | 14 | | 80 | 97 | 10 | 31 | 24 | 32 | | 09 | 178 | 48 | 29 | 46 | 55 | | 10 | 278 | 42 | 76 | 69 | 91 | | 11 | 329 | 80 | 95 | 66 | 88 | | 12 | 285 | 96 | 94 | 95 | | | 13 | | | | | | | 14 | | | | | | | 15 | | | | | | | 16 | | | | | | | 17 | | | | | | | 18 | | | | | | | 19 | | | | | | | 20 | | | | | | | 21 | | | | | | | 22 | | | | | | | 23 | | | | | | | | 1409 | Total | | | | AM Peak Hour Start 10:30 AM Peak Hour Total 335 AM Peak Hour Factor 88.16 % PM Peak Hour Start PM Peak Hour Total PM Peak Hour Factor Site Name WB AVILA BEACH BWT HWY 101 & SAN LUIS BAY DR Jurisdiction Study Type Volume (2-way) Location Code 9867 Direction West Date 8/11/2006 Real Time 15:23 Start Date 8/11/2006 Start Time 16:00 Sample Time 00:15 Operator Number 57 Machine Number 2 Friday, August 11, 2006 | | C | 8-11-06 | 6 (Ch2(| 2-1)) | | | C | 8-12-06 | (Ch2(| 2-1)) | | | 0 | 8-13-06 (| Ch2(2- | 1)) | | 08 | 3-14-06 | (Ch2(2- | ·1)) | | |-------|-----------|----------|---------|-------|-------|-------|-----------|----------|-------|-------|---------|-------|-----------|------------|---------|------------|-------|-----------|----------|---------|---------|--------| | HR | HR | | | | | HR | HR | | | | | HR | HR | • | | | HR | HR | | | | | | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | Begin | Total | 00-15 15 | 5-30 30 | 0-45 45-00 | Begin | Total | 00-15 1 | 15-30 3 | 0-45 45 | 5-00 | | 00 | | | | | | 00 | 31 | 11 | 14 | 2 | 4 | 00 | 32 | 11 | 11 | 5 5 | 00 | 6 | 0 | 1 | 3 | 2 | | 01 | | | | | | 01 | 16 | 5 | 4 | 3 | 4 | 01 | 20 | 5 | 6 | 2 7 | 01 | 12 | 3 | 3 | 2 | 4 | | 02 | | | | | | 02 | 15 | 7 | 5 | 1 | 2 | 02 | 18 | 3 | 3 | 8 4 | 02 | 15 | 2 | 3 | 1 | 9 | | 03 | | | | | | 03 | 4 | 0 | 0 | 2 | 2 | 03 | 21 | 5 | 4 | 7 5 | 03 | 5 | 1 | 1 | 0 | 3 | | 04 | | | | | | 04 | 14 | 2 | 3 | 4 | 5 | 04 | 34 | 10 | 3 | 8 13 | 04 | 16 | 0 | 10 | 3 | 3 | | 05 | | | | | | 05 | 47 | 4 | 8 | 9 | 26 | 05 | 44 | 2 | 8 | 16 18 | 05 | 91 | 14 | 17 | 27 | 33 | | 06 | | | | | | 06 | 143 | 28 | 22 | 36 | 57 | 06 | 85 | 15 | 20 | 13 37 | 06 | 211 | 43 | 44 | 66 | 58 | | 07 | | | | | | 07 | 147 | 31 | 34 | 35 | 47 | 07 | 139 | 26 | 30 | 20 63 | 07 | 235 | 52 | 68 | 61 | 54 | | 80 | | | | | | 08 | 207 | 49 | 43 | 47 | 68 | 08 | 198 | 41 | 43 | 60 54 | 80 | 198 | 46 | 49 | 56 | 47 | | 09 | | | | | | 09 | 227 | 44 | 71 | 47 | 65 | 09 | 272 | 46 | 50 | 88 88 | 09 | 197 | 42 | 36 | 49 | 70 | | 10 | | | | | | 10 | 296 | 70 | 64 | 64 | 98 | 10 | 349 | 83 | 58 | 91 117 | 10 | 221 | 49 | 51 | 50 | 71 | | 11 | | | | | | 11 | 413 | 88 | 102 | 100 | 123 | 11 | 416 | 101 | 103 | 105 107 | 11 | 274 | 79 | 64 | 63 | 68 | | 12 | | | | | | 12 | 520 | 134 | 134 | 118 | 134 | 12 | 495 | 106 | 141 | 112 136 | 12 | 316 | 67 | 79 | 82 | 88 | | 13 | | | | | | 13 | 550 | 123 | 146 | 144 | 137 | 13 | 584 | 122 | 140 | 161 161 | 13 | 376 | 88 | 95 | 94 | 99 | | 14 | | | | | | 14 | 510 | 119 | 146 | 120 | 125 | 14 | 544 | 139 | 130 | 140 135 | 14 | 322 | 69 | 84 | 76 | 93 | | 15 | | | | | | 15 | 463 | 118 | 126 | 100 | 119 | 15 | 409 | 112 | 96 | 110 91 | 15 | 323 | 92 | 71 | 82 | 78 | | 16 | 377 | 87 | 95 | 87 | 108 | 16 | 366 | 98 | 90 | 88 | 90 | 16 | 366 | 84 | 111 | 94 77 | 16 | 238 | 76 | 55 | 62 | 45 | | 17 | 386 | 92 | 106 | 84 | 104 | 17 | 335 | 79 | 99 | 83 | 74 | 17 | 300 | 83 | 68 | 80 69 | 17 | 201 | 51 | 59 | 45 | 46 | | 18 | 399 | 125 | 113 | 78 | 83 | 18 | 300 | 70 | 89 | 75 | 66 | 18 | 223 | 47 | 57 | 60 59 | 18 | 212 | 57 | 55 | 43 | 57 | | 19 | 224 | 77 | 53 | 53 | 41 | 19 | 207 | 42 | 67 | 55 | 43 | 19 | 176 | 50 | 44 | 41 41 | 19 | 154 | 44 | 41 | 38 | 31 | | 20 | 182 | 49 | 47 | 29 | 57 | 20 | 176 | 55 | 35 | 50 | 36 | 20 | 124 | 28 | 39 | 29 28 | 20 | 102 | 23 | 22 | 24 | 33 | | 21 | 152 | 31 | 36 | 43 | 42 | 21 | 169 | 49 | 37 | 49 | 34 | 21 | 110 | 32 | 25 | 25 28 | 21 | 106 | 24 | 35 | 26 | 21 | | 22 | 128 | 34 | 22 | 41 | 31 | 22 | 113 | 29 | 35 | 23
 26 | 22 | 41 | 14 | 13 | 9 5 | 22 | 44 | 17 | 18 | 6 | 3 | | 23 | 75 | 22 | 22 | 20 | 11 | 23 | 63 | 25 | 19 | 5 | 14 | 23 | 20 | 5 | 7 | 3 5 | 23 | 19 | 4 | 7 | 6 | 2 | | | 1923 | Total | | | | | 5332 | Total | | • | | | 5020 | Total | | | | 3894 | Total | | | | | _ | AM Peak I | Hour Sta | art | | | | AM Peak I | Hour Sta | ırt | | 11:00 | | AM Peak H | Hour Start | | 10:45 | | AM Peak H | our Stai | rt | 1 | 0:45 | | | AM Peak I | Hour To | tal | | | | AM Peak I | Hour To | al | | 413 | | AM Peak H | Hour Total | | 426 | | AM Peak H | our Tota | al | | 277 | | | AM Peak I | Hour Fa | ctor | | | | AM Peak I | Hour Fa | ctor | | 83.94 % | | AM Peak H | Hour Facto | or | 91.03 % | | AM Peak H | our Fac | tor | 8 | 7.66 % | | | PM Peak I | Hour Sta | art | | 17:30 | | PM Peak I | Hour Sta | ırt | | 13:00 | | PM Peak H | Hour Start | | 13:15 | | PM Peak H | our Stai | rt | 1 | 3:00 | | | PM Peak I | Hour To | tal | | 426 | | PM Peak I | Hour To | al | | 550 | | PM Peak H | Hour Total | | 601 | | PM Peak H | our Tota | al | | 376 | | | PM Peak I | Hour Fa | ctor | | 85.20 | % | PM Peak I | Hour Fa | ctor | | 94.18 % | | PM Peak H | Hour Facto | or | 93.32 % | | PM Peak H | our Fac | tor | 9 | 4.95 % | Site Name WB AVILA BEACH BWT HWY 101 & SAN LUIS BAY DR Jurisdiction Study Type Volume (2-way) Location Code 9867 West Direction Date 8/11/2006 Real Time 15:23 Start Date 8/11/2006 Start Time 16:00 00:15 Sample Time Operator Number 57 Machine Number 2 Tuesday, August 15, 2006 | _ | 08-15-06 (Ch2(2-1)) | _ | 08-16-06 (Ch2(2- | -1)) | _ | 08-17-06 (Ch2(2-1)) |) | 08-18-06 (Ch2(2- | -1)) | |-------|-------------------------------|-------|---------------------|------------|-------|------------------------|-----------------------|---------------------|-------------| | HR | HR | HR | HR | | HR | HR | HR | HR | | | Begin | Total 00-15 15-30 30-45 45-00 | Begin | Total 00-15 15-30 3 | 0-45 45-00 | Begin | Total 00-15 15-30 30-4 | 45 45-00 Begin | Total 00-15 15-30 3 | 30-45 45-00 | | 00 | 6 2 2 2 0 | 00 | 18 5 5 | 3 5 | 00 | 14 5 3 | 5 1 00 | 11 3 4 | 1 3 | | 01 | 12 1 3 5 3 | 01 | 17 3 7 | 2 5 | 01 | 10 0 3 | 4 3 01 | 10 2 3 | 3 2 | | 02 | 3 1 0 1 1 | 02 | 7 3 1 | 1 2 | 02 | 7 1 3 | 2 1 02 | 8 1 4 | 2 1 | | 03 | 9 2 1 3 3 | 03 | 13 2 2 | 2 7 | 03 | 9 3 0 | 3 3 03 | 14 1 5 | 1 7 | | 04 | 31 3 6 6 16 | 04 | 38 1 13 | 11 13 | 04 | 38 2 6 | 9 21 04 | 40 3 10 | 11 16 | | 05 | 257 28 53 90 86 | 05 | 282 29 59 | 89 105 | 05 | 267 32 47 9 | 95 93 05 | 242 33 52 | 73 84 | | 06 | 310 72 77 80 81 | 06 | 341 68 89 | 82 102 | 06 | 346 88 72 9 | <mark>97 89</mark> 06 | 303 77 58 | 75 93 | | 07 | 273 75 69 64 65 | 07 | 228 52 63 | 40 73 | 07 | | <mark>51 83</mark> 07 | 227 46 70 | 57 54 | | 80 | 239 63 54 49 73 | 80 | 225 62 60 | 48 55 | 08 | 241 46 59 6 | <mark>65 71</mark> 08 | 274 51 64 | 71 88 | | 09 | 211 52 61 54 44 | 09 | 227 57 51 | 57 62 | 09 | 222 53 46 | <mark>63 60</mark> 09 | 225 39 52 | 67 67 | | 10 | 266 55 53 79 79 | 10 | 281 62 54 | 80 85 | 10 | 253 51 68 6 | <mark>64 70</mark> 10 | 282 75 72 | 73 62 | | 11 | 321 89 77 74 81 | 11 | 299 60 61 | 93 85 | 11 | | <mark>72 92</mark> 11 | 340 83 60 | 90 107 | | 12 | 319 78 84 76 81 | 12 | 324 71 81 | 87 85 | 12 | | 58 87 12 | 395 106 81 | 103 105 | | 13 | 315 74 78 73 90 | 13 | 345 93 89 | 82 81 | 13 | | 85 97 13 | 356 95 93 | 80 88 | | 14 | 337 76 98 82 81 | 14 | 339 67 98 | 75 99 | 14 | 352 91 91 9 | 90 80 14 | 380 94 88 | 96 102 | | 15 | 274 62 65 71 76 | 15 | 323 83 90 | 75 75 | 15 | | 50 66 15 | 391 85 96 | 96 114 | | 16 | 201 46 58 45 52 | 16 | 239 54 66 | 50 69 | 16 | 272 58 80 5 | 51 83 16 | 401 90 111 | 96 104 | | 17 | 184 38 38 55 53 | 17 | 275 76 54 | 64 81 | 17 | | 56 60 17 | 396 93 108 | 88 107 | | 18 | 217 53 57 47 60 | 18 | 238 53 70 | 56 59 | 18 | 219 63 65 4 | 42 49 18 | 377 97 109 | 100 71 | | 19 | 172 45 47 52 28 | 19 | 160 36 50 | 46 28 | 19 | | 41 34 19 | 247 76 77 | 45 49 | | 20 | 116 20 38 35 23 | 20 | 123 28 31 | 36 28 | 20 | | 27 24 20 | 163 42 41 | 40 40 | | 21 | 87 19 27 18 23 | 21 | 76 17 18 | 19 22 | 21 | 113 26 33 2 | 26 28 21 | 117 29 25 | 28 35 | | 22 | 49 9 20 8 12 | 22 | 69 22 18 | 15 14 | 22 | 45 12 10 | 12 11 22 | 100 25 23 | 25 27 | | 23 | 24 6 8 7 3 | 23 | 30 8 8 | 8 6 | 23 | 25 6 9 | 6 4 23 | 73 21 20 | 21 11 | | | 4233 Total | | 4517 Total | | | 4403 Total | | 5372 Total | AM Peak Hour Start 05:30 | , | AM Peak Hour Start | 05:30 | | AM Peak Hour Start | 05:45 | AM Peak Hour Start | 11:00 | | | AM Peak Hour Total 325 | , | AM Peak Hour Total | 351 | | AM Peak Hour Total | 350 | AM Peak Hour Total | 340 | | | AM Peak Hour Factor 90.28 % | , | AM Peak Hour Factor | 83.57 % | | AM Peak Hour Factor | 90.21 % | AM Peak Hour Factor | 79.44 % | | | PM Peak Hour Start 13:45 | ı | PM Peak Hour Start | 14:15 | | PM Peak Hour Start | 13:45 | PM Peak Hour Start | 17:45 | | | PM Peak Hour Total 346 | ı | PM Peak Hour Total | 355 | | PM Peak Hour Total | 369 | PM Peak Hour Total | 413 | | | PM Peak Hour Factor 88.27 % | ı | PM Peak Hour Factor | 89.65 % | | PM Peak Hour Factor | 95.10 % | PM Peak Hour Factor | 94.72 % | Site Name WB AVILA BEACH BWT HWY 101 & SAN LUIS BAY DR Jurisdiction Study Type Volume (2-way) Location Code 9867 West Direction Date 8/11/2006 Real Time 15:23 Start Date 8/11/2006 Start Time 16:00 Sample Time 00:15 Operator Number 57 Machine Number 2 Saturday, August 19, 2006 | | C | 8-19-0 | 6 (Ch2) | (2-1)) | | |--|------------|------------|------------|------------|--------| | HR | HR | | | | | | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | | 00 | 32 | 4 | 12 | 8 | 8 | | 01 | 16 | 4 | 7 | 2 | 3 | | 02 | 11 | 1 | 4 | 4 | 2 | | 03 | 11 | 2 | 5 | 2 | 2
7 | | 04 | 21 | 5 | 3 | 6 | 7 | | 05 | 91 | 13 | 13 | 30 | 35 | | 06 | 132 | 32 | 34 | 30 | 36 | | 07 | 166 | 22 | 37 | 44 | 63 | | 80 | 191 | 36 | 43 | 60 | 52 | | 09 | 244 | 53 | 56 | 60 | 75 | | 10 | 338 | 71 | 80 | 98 | 89 | | | | | | | | | 11 | 433 | 106 | 110 | 115 | 102 | | 11
12 | 433
339 | 106
113 | 110
103 | 115
123 | 102 | | | | | | | 102 | | 12 | | | | | 102 | | 12
13 | | | | | 102 | | 12
13
14 | | | | | 102 | | 12
13
14
15 | | | | | 102 | | 12
13
14
15
16 | | | | | 102 | | 12
13
14
15
16
17 | | | | | 102 | | 12
13
14
15
16
17 | | | | | 102 | | 12
13
14
15
16
17
18 | | | | | 102 | | 12
13
14
15
16
17
18
19
20 | | | | | 102 | | 12
13
14
15
16
17
18
19
20
21 | | | | | 102 | AM Peak Hour Start 11:00 AM Peak Hour Total 433 AM Peak Hour Factor 94.13 % PM Peak Hour Start PM Peak Hour Total PM Peak Hour Factor Site Name EB+WB AVILA BEACH BETWEEN SAN LUIS ST & SAN LUIS BAY DR. 2-directional volume Jurisdiction Study Type Volume (ch1) Location Code 9883 Direction None 8/26/2006 Date Real Time 15:34 Start Date 8/26/2006 Start Time 16:00 Sample Time 00:15 29 2409 Saturday, August 26, 2006 Operator Number Machine Number Do not use data from 8/26/06 and 8/27/06 Site Name EB+WB AVILA BEACH BETWEEN SAN LUIS ST & SAN LUIS BAY DR. Jurisdiction Study Type Volume (ch1) Location Code 9883 None Direction Date 8/26/2006 Real Time 15:34 Start Date 8/26/2006 Start Time 16:00 00:15 Sample Time Operator Number 29 Machine Number 2409 Wednesday, August 30, 2006 | | 08-30-06 (Ch1) | <u> </u> | _ | | 08-31-06 | (Ch1) | | _ | | 09-01- | 06 (Ch1 |) | | | 09-02- | 06 (Ch |) | | |-------|----------------------|------------|-------|----------|-------------|----------|---------|-------|-----------|----------|---------|------------|-------|-----------|---------|--------|---------|---------| | HR | HR | | HR | HR | | | | HR | HR | | | | HR | HR | | | | | | Begin | Total 00-15 15-30 30 | 0-45 45-00 | Begin | Total | 00-15 15- | 30 30-45 | 45-00 | Begin | Total | 00-15 | 15-30 3 | 0-45 45-00 | Begin | Total | 00-15 | 15-30 | 30-45 4 | 5-00 | | 00 | 6 2 1 | 1 2 | 00 | 14 | 1 | 8 1 | 4 | 00 | 23 | 4 | 9 | 8 2 | 00 | 31 | 14 | 10 | 3 | 4 | | 01 | 9 2 4 | 2 1 | 01 | 11 | 1 | 3 4 | 3 | 01 | 14 | 3 | 4 | 5 2 | 01 | 15 | 3 | 3 | 3 | 6 | | 02 | 6 3 1 | 0 2 | 02 | 7 | 2 | 3 1 | 1 | 02 | 7 | 2 | 3 | 2 0 | 02 | 16 | 10 | 5 | 1 | 0 | | 03 | 14 1 3 | 3 7 | 03 | 8 | 0 | 2 5 | | 03 | 11 | 2 | 4 | 3 2 | 03 | 9 | 1 | 2 | 4 | 2 | | 04 | 67 <u>5</u> 16 | 15 31 | 04 | 52 | | 13 8 | 24 | 04 | 32 | 5 | 3 | 15 9 | 04 | 31 | 4 | 7 | 9 | 11 | | 05 | | 154 200 | 05 | 457 | | 131 | 167 | 05 | 110 | 7 | 15 | 37 51 | 05 | 87 | 5 | 11 | 34 | 37 | | 06 | | 124 100 | 06 | 390 | | 96 107 | 80 | 06 | 142 | 20 | 41 | 47 34 | 06 | 115 | 18 | 28 | 23 | 46 | | 07 | 270 71 64 | 73 62 | 07 | 262 | | 70 73 | | 07 | 141 | 22 | 31 | 37 51 | 07 | 159 | 28 | 20 | 61 | 50 | | 80 | 170 29 43 | 46 52 | 80 | 206 | | 58 39 | | 08 | 179 | 34 | 46 | 50 49 | 08 | 209 | 47 | 46 | 56 | 60 | | 09 | 166 39 29 | 51 47 | 09 | 220 | | 56 44 | 78 | 09 | 196 | 40 | 48 | 55 53 | 09 | 317 | 47 | 72 | 90 | 108 | | 10 | 209 38 49 | 63 59 | 10 | 260 | | 60 64 | | 10 | 362 | 60 | 72 | 125 105 | 10 | 439 | 114 | 87 | 94 | 144 | | 11 | 311 66 72 | 85 88 | 11 | 293 | | 74 74 | | 11 | 484 | 111 | 88 | 134 151 | 11 | 705 | 132 | 170 | 180 | 223 | | 12 | 367 76 95 | 72 124 | 12 | 392 | | 103 86 | | 12 | 717 | 179 | 159 | 191 188 | 12 | 896 | 210 | 242 | 207 | 237 | | 13 | 438 98 116 | 113 111 | 13 | 404 | 98 1 | 26 86 | 94 | 13 | 716 | 186 | 161 | 178 191 | 13 | 862 | 215 | 187 | 208 | 252 | | 14 | 325 86 85 | 82 72 | 14 | 391 | 74 | 87 137 | 93 | 14 | 688 | 175 | 167 | 126 220 | 14 | 1233 | 272 | 317 | 315 | 329 | | 15 | 332 108 75 | 87 62 | 15 | 483 | _ | 128 | | 15 | 581 | 165 | 138 | 145 133 | 15 | 1038 | 326 | 270 | 233 | 209 | | 16 | 245 50 66 | 69 60 | 16 | 513 | 108 1 | 129 | | 16 | 491 | 142 | 122 | 105 122 | 16 | 618 | 181 | 150 | 146 | 141 | | 17 | 281 72 87 | 67 55 | 17 | 607 | 135 1 | 142 168 | 162 | 17 | 410 | 110 | 103 |
110 87 | 17 | 408 | 98 | 96 | 94 | 120 | | 18 | 183 47 47 | 34 55 | 18 | 512 | 162 1 | 134 | 87 | 18 | 326 | 88 | 81 | 69 88 | 18 | 373 | 116 | 105 | 73 | 79 | | 19 | 160 35 44 | 39 42 | 19 | 226 | 61 | 73 46 | 46 | 19 | 269 | 74 | 65 | 63 67 | 19 | 252 | 73 | 79 | 61 | 39 | | 20 | 109 26 33 | 19 31 | 20 | 133 | 32 | 39 32 | 30 | 20 | 164 | 40 | 45 | 42 37 | 20 | 145 | 50 | 33 | 34 | 28 | | 21 | 105 27 25 | 33 20 | 21 | 122 | 27 | 19 35 | 41 | 21 | 151 | 40 | 35 | 42 34 | 21 | 136 | 31 | 35 | 38 | 32 | | 22 | 46 9 17 | 10 10 | 22 | 99 | 31 | 31 16 | 21 | 22 | 83 | 35 | 17 | 13 18 | 22 | 80 | 26 | 16 | 22 | 16 | | 23 | 25 4 11 | 5 5 | 23 | 51 | 16 | 7 14 | 14 | 23 | 66 | 37 | 7 | 13 9 | 23 | 47 | 11 | 15 | 6 | 15 | | | 4852 Total | | | 6113 | Total | | | | 6363 | Total | | | | 8221 | Γotal | AM Peak Hour Start | 05:15 | Α | M Peak F | lour Start | | 05:15 | | AM Peak H | lour Sta | ırt | 11:00 | | AM Peak H | our Sta | art | , | 11:00 | | | AM Peak Hour Total | 602 | Α | M Peak F | lour Total | | 513 | | AM Peak H | lour Tot | al | 484 | | AM Peak H | our To | tal | | 705 | | | AM Peak Hour Factor | 75.25 % | Α | M Peak F | lour Factor | | 76.80 % | | AM Peak H | lour Fac | ctor | 80.13 | % | AM Peak H | our Fa | ctor | 7 | 79.04 % | | | PM Peak Hour Start | 12:45 | Р | M Peak F | lour Start | | 17:15 | | PM Peak H | lour Sta | ırt | 12:30 | | PM Peak H | our Sta | art | | 14:15 | | | PM Peak Hour Total | 451 | Р | M Peak F | our Total | | 634 | | PM Peak H | lour Tot | tal | 726 | | PM Peak H | our To | tal | | 1287 | | | PM Peak Hour Factor | 90.93 % | Р | M Peak F | lour Factor | | 94.35 % | | PM Peak H | lour Fac | ctor | 95.03 | % | PM Peak H | our Fa | ctor | ? | 97.80 % | Site Name EB+WB AVILA BEACH BETWEEN SAN LUIS ST & SAN LUIS BAY DR. Jurisdiction Study Type Volume (ch1) Location Code 9883 None Direction Date 8/26/2006 Real Time 15:34 Start Date 8/26/2006 Start Time 16:00 Sample Time 00:15 Operator Number 29 Machine Number 2409 Sunday, September 03, 2006 | | | 09-03 | -06 (Ch | ո1) | | | | 09-04 | -06 (Cl | ո1) | | |-------|--|----------|---------|-------|-------|------------------------|-----------|---------|---------|-------|-------| | HR | HR | | | | | HR | HR | | | | | | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | | 00 | 27 | 16 | 4 | 3 | 4 | 00 | 8 | 5 | 1 | 1 | 1 | | 01 | 9 | 2 | 1 | 3 | 3 | 01 | 6 | 1 | 3 | 2 | 0 | | 02 | 10 | 6 | 3 | 0 | 1 | 02 | 1 | 1 | 0 | 0 | 0 | | 03 | 8 | 3 | 0 | 4 | 1 | 03 | 12 | 1 | 3 | 3 | 5 | | 04 | 15 | 2 | 5 | 6 | 2 | 04 | 61 | 2 | 17 | 18 | 24 | | 05 | 143 | 13 | 36 | 39 | 55 | 05 | 514 | 61 | 128 | 159 | 166 | | 06 | 162 | 41 | 46 | 34 | 41 | 06 | 411 | 108 | 126 | 101 | 76 | | 07 | 154 | 35 | 35 | 48 | 36 | 07 | 273 | 69 | 78 | 59 | 67 | | 80 | 167 | 30 | 39 | 44 | 54 | 08 | 182 | 56 | 37 | 39 | 50 | | 09 | 264 | 62 | 71 | 57 | 74 | 09 | 156 | 35 | 41 | 37 | 43 | | 10 | 374 | 55 | 96 | 111 | 112 | 10 | 144 | 36 | 29 | 38 | 41 | | 11 | 530 | 100 | 124 | 134 | 172 | 11 | 224 | 44 | 51 | 70 | 59 | | 12 | 614 | 141 | 161 | 153 | 159 | 12 | 139 | 68 | 71 | | | | 13 | 658 | 164 | 152 | 186 | 156 | 13 | | | | | | | 14 | 622 | 160 | 171 | 129 | 162 | 14 | | | | | | | 15 | 530 | 125 | 172 | 118 | 115 | 15 | | | | | | | 16 | 364 | 121 | 76 | 95 | 72 | 16 | | | | | | | 17 | 288 | 67 | 95 | 54 | 72 | 17 | | | | | | | 18 | 230 | 47 | 70 | 50 | 63 | 18 | | | | | | | 19 | 118 | 42 | 32 | 20 | 24 | 19 | | | | | | | 20 | 77 | 20 | 26 | 15 | 16 | 20 | | | | | | | 21 | 94 | 21 | 23 | 29 | 21 | 21 | | | | | | | 22 | 44 | 21 | 5 | 11 | 7 | 22 | | | | | | | 23 | 22 | 8 | 9 | 3 | 2 | 23 | | | | | | | | 5524 | Total | | | | | 2131 | Total | | | | | | 5524 Total | AM Peak I | Hour Sta | art | | 11:00 | | AM Peak I | Hour St | art | | 05:15 | | | AM Peak Hour Total | | | | | 530 AM Peak Hour Total | | | | | 561 | | | AM Peak Hour Factor 77.0 | | | | | % | AM Peak I | Hour Fa | ctor | | 84.49 | | | PM Peak Hour Start 13:3 | | | | | | PM Peak I | Hour St | art | | | | | PM Peak Hour Total 67 PM Peak Hour Factor 90.4 | | | | | | PM Peak I | Hour To | tal | | | | | PM Peak I | Hour Fa | ctor | | 90.46 | % | PM Peak I | Hour Fa | ctor | | | Site Name EB AVILA BEACH BETWEEN SAN MIGUEL ST AND SAN LUIS ST Jurisdiction Study Type Volume (ch1) Location Code 9890 East Direction Date 8/26/2006 Real Time 17:40 Start Date 8/26/2006 Start Time 18:00 00:15 Sample Time 29 Operator Number Machine Number 1012 Saturday, August 26, 2006 | | | 8/2 | 6/2006 | | | | | 8/2 | 7/2006 | | | | | 8/28 | /2006 | | | | 8/29 | /2006 | | | |-------|---------|----------|--------|-------|-------|-------|-----------|----------|--------|-------|---------|-------|-----------|-----------|---------|------------|-------|-----------|----------|--------|---------|--------| | HR | HR | | | | | HR | HR | | | | | HR | HR | | | | HR | HR | | | | | | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | Begin | Total | 00-15 1 | 15-30 3 | 0-45 45-00 | Begin | Total | 00-15 1 | 5-30 3 | 0-45 45 | 5-00 | | 00 | | | | | | 00 | 8 | 4 | 1 | 1 | 2 | 00 | 19 | 10 | 1 | 3 5 | 00 | 11 | 6 | 2 | 1 | 2 | | 01 | | | | | | 01 | 13 | 3 | 0 | 7 | 3 | 01 | 13 | 2 | 2 | 6 3 | 01 | 13 | 2 | 3 | 5 | 3 | | 02 | | | | | | 02 | 7 | 6 | 1 | 0 | 0 | 02 | 5 | 1 | 2 | 1 1 | 02 | 2 | 1 | 0 | 0 | 1 | | 03 | | | | | | 03 | 2 | 1 | 0 | 0 | 1 | 03 | 1 | 0 | 0 | 0 1 | 03 | 3 | 1 | 0 | 2 | 0 | | 04 | | | | | | 04 | 3 | 1 | 0 | 0 | 2 | 04 | 3 | 2 | 0 | 0 1 | 04 | 3 | 1 | 0 | 0 | 2 | | 05 | | | | | | 05 | 14 | 4 | 5 | 1 | 4 | 05 | 12 | 3 | 3 | 2 4 | 05 | 17 | 3 | 6 | 2 | 6 | | 06 | | | | | | 06 | 80 | 8 | 21 | 34 | 17 | 06 | 82 | 7 | 27 | 26 22 | 06 | 88 | 12 | 25 | 26 | 25 | | 07 | | | | | | 07 | 74 | 14 | 18 | 25 | 17 | 07 | 72 | 15 | 17 | 23 17 | 07 | 56 | 18 | 12 | 17 | 9 | | 08 | | | | | | 08 | 105 | 17 | 27 | 27 | 34 | 08 | 71 | 15 | 21 | 14 21 | 80 | 83 | 13 | 22 | 25 | 23 | | 09 | | | | | | 09 | 123 | 17 | 35 | 46 | 25 | 09 | 134 | 28 | 34 | 38 34 | 09 | 136 | 26 | 40 | 32 | 38 | | 10 | | | | | | 10 | 171 | 36 | 43 | 44 | 48 | 10 | 169 | 38 | 37 | 45 49 | 10 | 166 | 30 | 55 | 43 | 38 | | 11 | | | | | | 11 | 185 | 44 | 44 | 49 | 48 | 11 | 195 | 42 | 40 | 52 61 | 11 | 195 | 50 | 56 | 40 | 49 | | 12 | | | | | | 12 | 232 | 48 | 61 | 58 | 65 | 12 | 232 | 51 | 63 | 45 73 | 12 | 241 | 55 | 44 | 76 | 66 | | 13 | | | | | | 13 | 232 | 50 | 45 | 57 | 80 | 13 | 237 | 55 | 61 | 56 65 | 13 | 265 | 63 | 68 | 66 | 68 | | 14 | | | | | | 14 | 379 | 101 | 82 | 105 | 91 | 14 | 286 | 43 | 83 | 77 83 | 14 | 344 | 65 | 96 | 91 | 92 | | 15 | | | | | | 15 | 338 | 84 | 86 | 82 | 86 | 15 | 347 | 68 | 75 | 73 131 | 15 | 392 | 97 | 73 | 92 | 130 | | 16 | | | | | | 16 | 305 | 96 | 74 | 80 | 55 | 16 | 686 | 185 | 134 | 230 137 | 16 | 739 | 205 | 150 | 250 | 134 | | 17 | | | | | | 17 | 200 | 57 | 60 | 39 | 44 | 17 | 273 | 113 | 56 | 55 49 | 17 | 296 | 90 | 102 | 63 | 41 | | 18 | 466 | 126 | 147 | 101 | 92 | 18 | 187 | 55 | 38 | 47 | 47 | 18 | 198 | 43 | 48 | 65 42 | 18 | 211 | 50 | 64 | 54 | 43 | | 19 | 453 | 141 | 112 | 103 | 97 | 19 | 114 | 27 | 32 | 34 | 21 | 19 | 113 | 35 | 31 | 20 27 | 19 | 145 | 36 | 43 | 40 | 26 | | 20 | 327 | 119 | 73 | 75 | 60 | 20 | 77 | 17 | 21 | 18 | 21 | 20 | 66 | 21 | 19 | 11 15 | 20 | 74 | 18 | 12 | 18 | 26 | | 21 | 104 | 40 | 32 | 23 | 9 | 21 | 68 | 14 | 14 | 21 | 19 | 21 | 40 | 6 | 12 | 12 10 | 21 | 52 | 11 | 15 | 9 | 17 | | 22 | 104 | 26 | 28 | 28 | 22 | 22 | 52 | 10 | 21 | 13 | 8 | 22 | 48 | 8 | 19 | 11 10 | 22 | 63 | 16 | 25 | 14 | 8 | | 23 | 32 | 13 | 6 | 8 | 5 | 23 | 25 | 4 | 7 | 7 | 7 | 23 | 28 | 6 | 5 | 13 4 | 23 | 56 | 14 | 14 | 14 | 14 | | | 1486 | Total | | | | | 2994 | Total | | • | | | 3330 | Total | | | | 3651 | otal | AM Peak | Hour Sta | art | | | | AM Peak I | Hour Sta | ırt | | 10:45 | | AM Peak I | Hour Star | t | 11:00 | | AM Peak H | our Stai | t | 11 | 1:00 | | | AM Peak | Hour To | tal | | | | AM Peak I | Hour Tot | al | | 185 | | AM Peak I | Hour Tota | al | 195 | | AM Peak H | our Tota | al | | 195 | | | AM Peak | Hour Fa | ctor | | | | AM Peak I | Hour Fac | ctor | | 94.39 % | | AM Peak I | Hour Fac | tor | 79.92 % | | AM Peak H | our Fac | tor | 8 | 7.05 % | | | PM Peak | Hour Sta | art | | 18:15 | | PM Peak I | Hour Sta | ırt | | 14:00 | | PM Peak I | Hour Star | t | 16:00 | | PM Peak H | our Stai | t | 10 | 6:00 | | | PM Peak | Hour To | tal | | 481 | | PM Peak I | Hour Tot | al | | 379 | | PM Peak I | Hour Tota | al | 686 | | PM Peak H | our Tota | al | | 739 | | | PM Peak | Hour Fa | ctor | | 81.80 | % | PM Peak I | Hour Fac | ctor | | 90.24 % | | PM Peak I | Hour Fac | tor | 74.57 % | | PM Peak H | our Fac | tor | 73 | 3.90 % | Site Name EB AVILA BEACH BETWEEN SAN MIGUEL ST AND SAN LUIS ST Jurisdiction Study Type Volume (ch1) Location Code 9890 East Direction Date 8/26/2006 Real Time 17:40 Start Date 8/26/2006 Start Time 18:00 00:15 Sample Time 29 Operator Number Machine Number 1012 Wednesday, August 30, 2006 | | 8/30/2006 | 8/31/2006 | | | 9/1/2006 | | 9/2/2006 | | |-------|-------------------------------|-------------------------|-------------|-------|----------------------------|--------------------|---------------------|-------------| | HR | HR | HR HR | | HR | HR | —
HR | HR | | | Begin | Total 00-15 15-30 30-45 45-00 | Begin Total 00-15 15-30 | 30-45 45-00 | Begin | Total 00-15 15-30 30-45 45 | 00 Begin | Total 00-15 15-30 3 | 30-45 45-00 | | 00 | 6 3 0 2 1 | 00 20 6 7 | 4 3 | 00 | 17 3 3 4 | 7 00 | 23 3 3 | 9 8 | | 01 | 15 2 3 8 2 | 01 10 2 3 | 2 3 | 01 | 13 2 8 2 | 1 01 | 19 7 1 | 6 5 | | 02 | 5 2 3 0 0 | 02 16 4 6 | 3 3 | 02 | 9 8 0 0 | 1 02 | 9 3 3 | 0 3 | | 03 | 5 1 1 1 2 | 03 9 0 4 | 4 1 | 03 | 5
0 3 2 | 0 03 | 8 1 2 | 3 2 | | 04 | 9 2 1 2 4 | 04 8 1 2 | 1 4 | 04 | 11 2 2 3 | 4 04 | 8 1 3 | 1 3 | | 05 | 17 2 2 4 9 | 05 22 2 5 | 9 6 | 05 | 15 1 3 5 | 6 05 | 23 4 6 | 6 7 | | 06 | 82 11 27 24 20 | 06 89 13 27 | 32 17 | 06 | 96 12 29 28 | 27 06 | 75 10 25 | 20 20 | | 07 | 67 18 18 21 10 | 07 88 22 18 | 23 25 | 07 | 47 9 11 14 | 13 07 | 53 6 16 | 13 18 | | 80 | 82 16 26 20 20 | 08 89 17 26 | 19 27 | 08 | 97 25 25 27 | 20 08 | 93 18 25 | 27 23 | | 09 | 103 21 22 27 33 | 09 151 26 33 | 41 51 | 09 | 123 28 19 33 | 43 09 | 189 30 48 | 65 46 | | 10 | 178 28 50 46 54 | 10 227 73 49 | 53 52 | 10 | 217 47 55 56 | <u>59</u> 10 | 275 <u>59</u> 73 | 69 74 | | 11 | 184 45 43 51 45 | 11 204 38 47 | 61 58 | 11 | 279 74 60 54 | <mark>91</mark> 11 | 402 87 95 | 111 109 | | 12 | 244 63 61 54 66 | 12 242 58 68 | 55 61 | 12 | 321 71 82 99 | 69 12 | 457 130 119 | 100 108 | | 13 | 306 80 73 65 88 | 13 248 63 59 | 69 57 | 13 | | 05 13 | 464 119 102 | 117 126 | | 14 | 351 74 103 88 86 | 14 310 81 85 | 76 68 | 14 | | 25 14 | 544 130 141 | 132 141 | | 15 | 370 89 61 105 115 | 15 382 89 95 | 76 122 | 15 | | 20 15 | 562 121 148 | 119 174 | | 16 | 613 181 102 221 109 | 16 665 194 126 | 192 153 | 16 | | 06 16 | 539 142 137 | 119 141 | | 17 | 318 102 74 85 57 | 17 363 97 92 | 92 82 | 17 | 337 114 72 91 | 60 17 | 598 139 129 | 130 200 | | 18 | 226 61 68 59 38 | 18 427 81 118 | 99 129 | 18 | 328 61 85 97 | 85 18 | 1033 267 314 | 276 176 | | 19 | 135 38 40 33 24 | 19 370 128 80 | 97 65 | 19 | 231 74 55 49 | 53 19 | 372 129 87 | 89 67 | | 20 | 74 12 19 18 25 | 20 173 61 46 | 36 30 | 20 | 162 44 39 48 | 31 20 | 209 58 46 | 46 59 | | 21 | 69 27 16 13 13 | 21 112 21 41 | 26 24 | 21 | 120 30 26 37 | 27 21 | 152 43 34 | 31 44 | | 22 | 66 18 20 18 10 | 22 91 19 36 | 20 16 | 22 | 124 33 36 30 | 25 22 | 106 26 30 | 29 21 | | 23 | 25 8 0 12 5 | 23 66 21 17 | 14 14 | 23 | 51 19 11 10 | 11 23 | 50 12 17 | 13 8 | | | 3550 Total | 4382 Total | | | 4395 Total | | 6263 Total | AM Peak Hour Start 10:15 | AM Peak Hour Start | 10:00 | | | 00 | AM Peak Hour Start | 11:00 | | | AM Peak Hour Total 195 | AM Peak Hour Total | 227 | | | 279 | AM Peak Hour Total | 402 | | | AM Peak Hour Factor 90.28 9 | | 77.74 % | | | 65 % | AM Peak Hour Factor | 90.54 % | | | PM Peak Hour Start 15:45 | PM Peak Hour Start | 16:00 | | | 45 | PM Peak Hour Start | 17:45 | | | PM Peak Hour Total 619 | PM Peak Hour Total | 665 | | | 87 | PM Peak Hour Total | 1057 | | | PM Peak Hour Factor 70.02 9 | 6 PM Peak Hour Factor | 85.70 % | | PM Peak Hour Factor 92 | .23 % | PM Peak Hour Factor | 84.16 % | Site Name EB AVILA BEACH BETWEEN SAN MIGUEL ST AND SAN LUIS ST Jurisdiction Study Type Volume (ch1) Location Code 9890 East Direction Date 8/26/2006 Real Time 17:40 Start Date 8/26/2006 Start Time 18:00 00:15 Sample Time Operator Number 29 Machine Number 1012 Sunday, September 03, 2006 | | | 9/3 | 3/2006 | | | | | 9/- | 4/2006 | | | | |-------|-----------|----------|--------|-------|-------|---------|-----------------------|---------|--------|-------|-------|--| | HR | HR | | | | | HR | HR | | | | | | | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | | | 00 | 25 | 8 | 8 | 4 | 5 | 00 | 4 | 1 | 0 | 3 | 0 | | | 01 | 14 | 7 | 2 | 4 | 1 | 01 | 5 | 1 | 2 | 2 | 0 | | | 02 | 11 | 3 | 7 | 1 | 0 | 02 | 5 | 1 | 1 | 1 | 2 | | | 03 | 6 | 2 | 1 | 0 | 3 | 03 | 5 | 0 | 3 | 2 | 0 | | | 04 | 7 | 0 | 4 | 0 | 3 | 04 | 6 | 1 | 0 | 1 | 4 | | | 05 | 18 | 2 | 5 | 5 | 6 | 05 | 19 | 1 | 3 | 7 | 8 | | | 06 | 88 | 13 | 20 | 40 | 15 | 06 | 94 | 12 | 29 | 28 | 25 | | | 07 | 67 | 11 | 19 | 20 | 17 | 07 | 74 | 12 | 17 | 16 | 29 | | | 80 | 124 | 24 | 28 | 24 | 48 | 80 | 90 | 23 | 23 | 19 | 25 | | | 09 | 159 | 22 | 33 | 47 | 57 | 09 | 134 | 29 | 31 | 34 | 40 | | | 10 | 258 | 62 | 52 | 63 | 81 | 10 | 123 | 27 | 34 | 29 | 33 | | | 11 | 321 | 87 | 69 | 102 | 63 | 11 | 137 | 31 | 29 | 37 | 40 | | | 12 | 397 | 89 | 99 | 96 | 113 | 12 | | | | | | | | 13 | 412 | 90 | 108 | 108 | 106 | 13 | | | | | | | | 14 | 518 | 123 | 139 | 114 | 142 | 14 | | | | | | | | 15 | 547 | 155 | 118 | 146 | 128 | 15 | | | | | | | | 16 | 451 | 134 | 102 | 103 | 112 | 16 | | | | | | | | 17 | 367 | 110 | 85 | 95 | 77 | 17 | | | | | | | | 18 | 278 | 71 | 74 | 86 | 47 | 18 | | | | | | | | 19 | 147 | 38 | 43 | 38 | 28 | 19 | | | | | | | | 20 | 115 | 25 | 29 | 17 | 44 | 20 | | | | | | | | 21 | 53 | 10 | 18 | 16 | 9 | 21 | | | | | | | | 22 | 53 | 6 | 21 | 19 | 7 | 22 | | | | | | | | 23 | 24 | 6 | 3 | 5 | 10 | 23 | | | | | | | | | 4460 | Total | | | | | 696 | Total | AM Peak I | Hour Sta | art | | 10:45 | | AM Peak I | Hour St | art | | 11:00 | | | | AM Peak I | Hour To | tal | | 339 | | AM Peak Hour Total 13 | | | | | | | | AM Peak I | Hour Fa | ctor | | 83.09 | % | AM Peak I | Hour Fa | ctor | | 85.63 | | | | PM Peak I | Hour Sta | art | | 14:45 | | PM Peak I | Hour St | art | | | | | | PM Peak I | Hour To | tal | | 561 | Hour To | lour Total | | | | | | | | PM Peak I | Hour Fa | ctor | | 90.48 | % | PM Peak Hour Factor | | | | | | Site Name WB AVILA BEACH BETWEEN SAN MIGUEL ST AND SAN LUIS ST Jurisdiction Study Type Volume (2-way) Location Code 9891 West Direction Date 8/26/2006 Real Time 17:40 Start Date 8/26/2006 Start Time 18:00 00:15 Sample Time Operator Number 29 Machine Number 1012 Saturday, August 26, 2006 | | | 8/2 | 6/2006 | | | | | 8/2 | 7/2006 | | | | | 8/2 | 8/2006 | | | | | 8/2 | 9/2006 | | | |-------|---------|---------|--------|-------|-------|-------|-----------|---------|---------|--------|--------|-------|-----------|---------|--------|-------------|---|------|-----------|---------|---------|------|---------| | HR | HR | | | | | | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | Begin | Total | 00-15 | 15-30 3 | 0-45 4 | 5-00 | Begin | Total | 00-15 | 15-30 | 30-45 45-00 | В | egin | Total | 00-15 | 15-30 3 | 0-45 | 45-00 | | 00 | | | | | | 00 | 2 | 2 | 0 | 0 | 0 | 00 | 8 | 2 | 2 | 3 1 | | 00 | 4 | 0 | 0 | 2 | 2 | | 01 | | | | | | 01 | 7 | 1 | 2 | 4 | 0 | 01 | 6 | 1 | 1 | 2 2 | | 01 | 4 | 0 | 1 | 1 | 2 | | 02 | | | | | | 02 | 2 | 1 | 0 | 1 | 0 | 02 | 3 | 0 | 2 | 0 1 | | 02 | 2 | 0 | 1 | 0 | 1 | | 03 | | | | | | 03 | 11 | 1 | 1 | 4 | 5 | 03 | 23 | 2 | 0 | 4 17 | | 03 | 25 | 4 | 4 | 6 | 11 | | 04 | | | | | | 04 | 65 | 7 | 4 | 12 | 42 | 04 | 218 | 14 | 21 | 60 123 | | 04 | 210 | 16 | 22 | 56 | 116 | | 05 | | | | | | 05 | 235 | 66 | 52 | 50 | 67 | 05 | 520 | 157 | 152 | 109 102 | | 05 | 581 | 165 | 171 | 119 | 126 | | 06 | | | | | | 06 | 222 | 67 | 61 | 42 | 52 | 06 | 333 | 121 | 65 | 75 72 | | 06 | 308 | 92 | 78 | 66 | 72 | | 07 | | | | | | 07 | 156 | 51 | 40 | 33 | 32 | 07 | 156 | 47 | 52 | 25 32 | | 07 | 162 | 35 | 56 | 37 | 34 | | 80 | | | | | | 80 | 123 | 35 | 29 | 20 | 39 | 80 | 143 | 31 | 46 | 30 36 | 4 | 80 | 154 | 36 | 50 | 34 | 34 | | 09 | | | | | | 09 | 163 | 36 | 47 | 46 | 34 | 09 | 152 | 38 | 44 | 25 45 | 1 | 09 | 165 | 39 | 44 | 37 | 45 | | 10 | | | | | | 10 | 184 | 40 | 35 | 50 | 59 | 10 | 163 | 38 | 45 | 38 42 | | 10 | 201 | 45 | 53 | 48 | 55 | | 11 | | | | | | 11 | 199 | 49 | 50 | 47 | 53 | 11 | 243 | 68 | 58 | 50 67 | | 11 | 223 | 50 | 58 | 64 | 51 | | 12 | | | | | | 12 | 247 | 67 | 54 | 47 | 79 | 12 | 206 | 58 | 49 | 52 47 | | 12 | 245 | 52 | 61 | 63 | 69 | | 13 | | | | | | 13 | 243 | 70 | 55 | 49 | 69 | 13 | 180 | 52 | 45 | 37 46 | | 13 | 224 | 54 | 71 | 53 | 46 | | 14 | | | | | | 14 | 222 | 63 | 48 | 53 | 58 | 14 | 211 | 55 | 45 | 60 51 | | 14 | 220 | 50 | 47 | 59 | 64 | | 15 | | | | | | 15 | 197 | 55 | 56 | 31 | 55 | 15 | 176 | 38 | 46 | 42 50 | | 15 | 194 | 55 | 58 | 43 | 38 | | 16 | | | | | | 16 | 173 | 51 | 45 | 33 | 44 | 16 | 138 | 35 | 36 | 33 34 | | 16 | 169 | 44 | 47 | 40 | 38 | | 17 | | | | | | 17 | 155 | 33 | 41 | 38 | 43 | 17 | 146 | 47 | 37 | 31 31 | | 17 | 149 | 46 | 38 | 34 | 31 | | 18 | 196 | 46 | 48 | | 49 | 18 | 130 | 36 | 34 | 26 | 34 | 18 | 103 | 33 | 33 | 20 17 | | 18 | 135 | 32 | 44 | 26 | 33 | | 19 | 99 | 31 | 18 | | 24 | 19 | 71 | 22 | 17 | 17 | 15 | 19 | 73 | 22 | 18 | 19 14 | | 19 | 87 | 28 | 22 | 23 | 14 | | 20 | 87 | 31 | 25 | 17 | 14 | 20 | 50 | 18 | 11 | 11 | 10 | 20 | 38 | 9 | 9 | 3 17 | | 20 | 51 | 15 | 16 | 7 | 13 | | 21 | 85 | 46 | 13 | | 14 | 21 | 54 | 20 | 14 | 12 | 8 | 21 | 54 | 16 | 21 | 11 6 | | 21 | 63 | 21 | 22 | 8 | 12 | | 22 | 33 | 12 | 5 | 8 | 8 | 22 | 29 | 5 | 6 | 9 | 9 | 22 | 17 | 6 | 2 | 4 5 | | 22 | 23 | 8 | 4 | 3 | 8 | | 23 | 8 | 2 | 4 | 1 | 1 | 23 | 8 | 2 | 5 | 0 | 1 | 23 | 7 | 2 | 1 | 3 1 | | 23 | 18 | 7 | 6 | 2 | 3 | | | 508 | Total | | | | | 2948 | Total | | | | | 3317 | Total | | | | | 3617 | Total | AM Peak | | | | | | AM Peak I | | | | 5:30 | | AM Peak F | | | 04:45 | | | AM Peak I | | | | 05:00 | | | AM Peak | Hour To | tal | | | | AM Peak I | | | | 245 | | AM Peak F | | | 541 | | | AM Peak I | | | | 581 | | | AM Peak | | | | | | AM Peak I | | | | 1.42 % | | AM Peak F | | | 86.15 | | | AM Peak I | | | | 84.94 % | | | PM Peak | | | | 18:00 | | PM Peak I | | | | 2:45 | | PM Peak F | | | 14:00 | | | PM Peak I | | | | 12:30 | | | PM Peak | Hour To | tal | | 196 | | PM Peak I | Hour To | tal | | 253 | | PM Peak F | lour To | tal | 211 | | | PM Peak I | | | | 257 | | | PM Peak | Hour Fa | ctor | | 92.45 | % | PM Peak I | Hour Fa | ctor | 8 | 0.06 % | | PM Peak F | lour Fa | ctor | 87.92 | % | | PM Peak I | lour Fa | ctor | | 90.49 % | Site Name WB AVILA BEACH BETWEEN SAN MIGUEL ST AND SAN LUIS ST Jurisdiction Study Type Volume (2-way) Location Code 9891 Direction West Date 8/26/2006 Real Time 17:40 Start Date 8/26/2006 Start Time 18:00 00:15 Sample Time 29 Operator Number Machine Number 1012 Wednesday, August 30, 2006 | | 8/30/2006 | | 8/31/2006 | | 9/1/2006 | | 9/2/2006 | | |-------|-------------------------------|-------------|-----------------------|--------------------
------------------------------|-------|----------------------|-------------| | HR | HR | HR HR | | HR | HR | HR | HR | | | Begin | Total 00-15 15-30 30-45 45-00 | Begin Total | 00-15 15-30 30-45 45- | 00 Begin | Total 00-15 15-30 30-45 45-0 | Begin | Total 00-15 15-30 30 |)-45 45-00 | | 00 | 8 1 2 1 4 | 00 8 | 1 3 2 | 2 00 | 10 6 1 2 | 00 | 10 1 5 | 3 1 | | 01 | 9 3 2 2 2 | 01 12 | 4 4 2 | 2 01 | 7 4 0 1 | 01 | 14 2 6 | 3 3 | | 02 | 6 1 1 1 3 | 02 8 | 3 1 1 | 3 02 | 8 1 0 3 | 02 | 4 1 0 | 1 2 | | 03 | 32 3 7 5 17 | 03 24 | 6 1 4 | 13 03 | 11 2 3 3 | 03 | 17 5 2 | 3 7 | | 04 | 229 11 29 71 118 | 04 189 | 9 24 48 1 | <mark>08</mark> 04 | 45 13 9 10 1 | 04 | 35 5 12 | 6 12 | | 05 | 548 148 174 119 107 | 05 478 | 130 156 102 | <mark>90</mark> 05 | 147 37 49 18 4 | 05 | 112 35 35 | 15 27 | | 06 | 317 104 86 70 57 | 06 283 | 94 68 64 | 57 06 | 111 37 26 19 2 | 06 | 108 23 38 | 26 21 | | 07 | 177 63 50 28 36 | 07 191 | 69 36 45 | 41 07 | 154 35 45 33 4 | 07 | 173 53 44 | 43 33 | | 08 | 134 32 42 35 25 | 08 153 | 32 41 37 | 43 08 | 150 40 35 32 4 | 08 | 190 47 52 | 37 54 | | 09 | 141 39 41 31 30 | 09 176 | 44 50 40 | 42 09 | 186 40 49 42 5 | 09 | 322 74 91 | 84 73 | | 10 | 187 48 54 31 54 | 10 209 | 47 56 58 | 48 10 | 289 85 73 68 6 | 10 | 427 82 116 | 101 128 | | 11 | 227 65 50 49 63 | 11 222 | 50 55 64 | 53 11 | 401 95 89 117 10 | 11 | 614 123 164 | 159 168 | | 12 | 267 57 72 61 77 | 12 257 | 55 70 62 | 70 12 | 469 120 130 115 10 | 12 | 627 152 164 | 154 157 | | 13 | 236 66 66 49 55 | 13 216 | 55 61 46 | 54 13 | 441 118 119 105 9 | 13 | 800 160 191 | 214 235 | | 14 | 233 51 49 69 64 | 14 285 | | 73 14 | 396 79 127 105 8 | 14 | 940 258 265 | 229 188 | | 15 | 162 55 45 29 33 | 15 320 | 81 85 75 | 79 15 | 369 96 90 102 8 | 15 | 578 176 147 | 127 128 | | 16 | 188 42 38 43 65 | 16 349 | 77 90 83 | 99 16 | 305 75 76 82 7 | 16 | 349 109 87 | 73 80 | | 17 | 139 31 44 30 34 | 17 432 | 118 112 113 | 89 17 | 275 89 65 59 6 | 17 | 337 77 93 | 89 78 | | 18 | 129 25 42 25 37 | 18 244 | 94 61 40 | 49 18 | 227 59 61 58 4 | 18 | 244 62 60 | 64 58 | | 19 | 106 30 32 21 23 | 19 126 | 48 33 22 | 23 19 | 169 54 52 30 3 | 19 | 139 55 32 | 30 22 | | 20 | 72 13 24 17 18 | 20 87 | 28 21 18 | 20 20 | 119 31 32 25 3 | 20 | 97 24 15 | 28 30 | | 21 | 59 26 13 9 11 | 21 96 | 23 38 19 | 16 21 | 91 27 27 23 1 | 21 | 76 31 14 | 20 11 | | 22 | 29 8 9 2 10 | 22 43 | 13 13 9 | 8 22 | 58 12 13 24 | 22 | 52 19 15 | 7 11 | | 23 | 14 3 2 2 7 | 23 30 | 9 11 5 | 5 23 | 40 10 10 11 | 23 | 29 7 8 | 11 3 | | | 3649 Total | 4438 | Total | | 4478 Total | _ | 6294 Total | | AM Peak Hour Start 04:45 | AM Peak | Hour Start 04 | 45 | AM Peak Hour Start 11:0 |) | AM Peak Hour Start | 11:00 | | | AM Peak Hour Total 559 | AM Peak | Hour Total 4 | 96 | AM Peak Hour Total 40 | | AM Peak Hour Total | 614 | | | AM Peak Hour Factor 80.32 | % AM Peak | Hour Factor 79 | 49 % | AM Peak Hour Factor 85.6 | 3 % | AM Peak Hour Factor | 91.37 % | | | PM Peak Hour Start 12:15 | PM Peak | Hour Start 16 | 45 | PM Peak Hour Start 12:0 |) | PM Peak Hour Start | 13:45 | | | PM Peak Hour Total 276 | PM Peak | Hour Total 4 | 42 | PM Peak Hour Total 46 |) | PM Peak Hour Total | 987 | | | PM Peak Hour Factor 89.61 | % PM Peak | Hour Factor 93 | 64 % | PM Peak Hour Factor 90.1 | 9 % | PM Peak Hour Factor | 93.11 % | Site Name WB AVILA BEACH BETWEEN SAN MIGUEL ST AND SAN LUIS ST Jurisdiction Study Type Volume (2-way) Location Code 9891 West Direction Date 8/26/2006 Real Time 17:40 Start Date 8/26/2006 Start Time 18:00 00:15 Sample Time Operator Number 29 Machine Number 1012 Sunday, September 03, 2006 | | | 9/ | 3/2006 | | | |-------|-------|-------|--------|-------|-------| | HR | HR | | | | | | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | | 00 | 7 | 2 | 3 | 2 | 0 | | 01 | 10 | 1 | 2 | 5 | 2 | | 02 | 5 | 0 | 1 | 3 | 1 | | 03 | 8 | 3 | 0 | 1 | 4 | | 04 | 56 | 6 | 1 | 16 | 33 | | 05 | 173 | 37 | 59 | 38 | 39 | | 06 | 132 | 37 | 35 | 30 | 30 | | 07 | 134 | 49 | 28 | 30 | 27 | | 80 | 187 | 35 | 43 | 53 | 56 | | 09 | 225 | 46 | 59 | 44 | 76 | | 10 | 343 | 82 | 89 | 78 | 94 | | 11 | 472 | 105 | 140 | 103 | 124 | | 12 | 467 | 105 | 135 | 120 | 107 | | 13 | 478 | 138 | 114 | 106 | 120 | | 14 | 397 | 92 | 102 | 87 | 116 | | 15 | 289 | 75 | 83 | 77 | 54 | | 16 | 242 | 72 | 42 | 54 | 74 | | 17 | 180 | 41 | 53 | 40 | 46 | | 18 | 142 | 37 | 46 | 32 | 27 | | 19 | 70 | 18 | 14 | 15 | 23 | | 20 | 44 | 8 | 5 | 15 | 16 | | 21 | 64 | 23 | 22 | 15 | 4 | | 22 | 27 | 9 | 8 | 4 | 6 | | 23 | 6 | 1 | 3 | 1 | 1 | | | 4158 | Total | | | | | | | | | | | | | | 9/4 | 4/2006 | | | |-------|-------|-------|--------|-------|----------| | HR | HR | | | | <u>-</u> | | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | | 00 | 4 | 1 | 1 | 1 | 1 | | 01 | 2 | 1 | 1 | 0 | 0 | | 02 | 5 | 0 | 0 | 1 | 4 | | 03 | 24 | 3 | 4 | 2 | 15 | | 04 | 243 | 19 | 24 | 65 | 135 | | 05 | 544 | 156 | 156 | 108 | 124 | | 06 | 285 | 84 | 73 | 57 | 71 | | 07 | 165 | 53 | 58 | 32 | 22 | | 80 | 123 | 33 | 33 | 31 | 26 | | 09 | 142 | 39 | 29 | 34 | 40 | | 10 | 137 | 35 | 34 | 24 | 44 | | 11 | 171 | 27 | 43 | 49 | 52 | | 12 | | | | | | | 13 | | | | | | | 14 | | | | | | | 15 | | | | | | | 16 | | | | | | | 17 | | | | | | | 18 | | | | | | | 19 | | | | | | | 20 | | | | | | | 21 | | | | | | | 22 | | | | | | | 23 | | | | | | | | 1845 | Total | | | | | | | | | | | | AM Peak Hour Start | 11:00 | |---------------------|---------| | AM Peak Hour Total | 472 | | AM Peak Hour Factor | 84.29 % | | PM Peak Hour Start | 12:15 | | PM Peak Hour Total | 500 | | PM Peak Hour Factor | 90.58 % | | | | | AM Peak Hour Start | 04:45 | |---------------------|---------| | AM Peak Hour Total | 555 | | AM Peak Hour Factor | 88.94 % | | PM Peak Hour Start | | | PM Peak Hour Total | | PM Peak Hour Factor Site Name EB AVILA BEACH BETWEEN SAN MIGUEL ST AND SAN LUIS ST Jurisdiction Study Type Volume (ch1) Location Code 9890 East Direction Date 8/26/2006 Real Time 17:40 Start Date 8/26/2006 Start Time 18:00 00:15 Sample Time 29 Operator Number Machine Number 1012 Saturday, August 26, 2006 | | | 8/2 | 6/2006 | | | | | 8/2 | 7/2006 | | | | | 8/28 | /2006 | | | | 8/29 | /2006 | | | |-------|---------|----------|--------|-------|-------|-------|-----------|----------|--------|-------|---------|-------|-----------|-----------|---------|------------|-------|-----------|----------|--------|---------|--------| | HR | HR | | | | | HR | HR | | | | | HR | HR | | | | HR | HR | | | | | | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | Begin | Total | 00-15 1 | 15-30 3 | 0-45 45-00 | Begin | Total | 00-15 1 | 5-30 3 | 0-45 45 | 5-00 | | 00 | | | | | | 00 | 8 | 4 | 1 | 1 | 2 | 00 | 19 | 10 | 1 | 3 5 | 00 | 11 | 6 | 2 | 1 | 2 | | 01 | | | | | | 01 | 13 | 3 | 0 | 7 | 3 | 01 | 13 | 2 | 2 | 6 3 | 01 | 13 | 2 | 3 | 5 | 3 | | 02 | | | | | | 02 | 7 | 6 | 1 | 0 | 0 | 02 | 5 | 1 | 2 | 1 1 | 02 | 2 | 1 | 0 | 0 | 1 | | 03 | | | | | | 03 | 2 | 1 | 0 | 0 | 1 | 03 | 1 | 0 | 0 | 0 1 | 03 | 3 | 1 | 0 | 2 | 0 | | 04 | | | | | | 04 | 3 | 1 | 0 | 0 | 2 | 04 | 3 | 2 | 0 | 0 1 | 04 | 3 | 1 | 0 | 0 | 2 | | 05 | | | | | | 05 | 14 | 4 | 5 | 1 | 4 | 05 | 12 | 3 | 3 | 2 4 | 05 | 17 | 3 | 6 | 2 | 6 | | 06 | | | | | | 06 | 80 | 8 | 21 | 34 | 17 | 06 | 82 | 7 | 27 | 26 22 | 06 | 88 | 12 | 25 | 26 | 25 | | 07 | | | | | | 07 | 74 | 14 | 18 | 25 | 17 | 07 | 72 | 15 | 17 | 23 17 | 07 | 56 | 18 | 12 | 17 | 9 | | 08 | | | | | | 08 | 105 | 17 | 27 | 27 | 34 | 08 | 71 | 15 | 21 | 14 21 | 80 | 83 | 13 | 22 | 25 | 23 | | 09 | | | | | | 09 | 123 | 17 | 35 | 46 | 25 | 09 | 134 | 28 | 34 | 38 34 | 09 | 136 | 26 | 40 | 32 | 38 | | 10 | | | | | | 10 | 171 | 36 | 43 | 44 | 48 | 10 | 169 | 38 | 37 | 45 49 | 10 | 166 | 30 | 55 | 43 | 38 | | 11 | | | | | | 11 | 185 | 44 | 44 | 49 | 48 | 11 | 195 | 42 | 40 | 52 61 | 11 | 195 | 50 | 56 | 40 | 49 | | 12 | | | | | | 12 | 232 | 48 | 61 | 58 | 65 | 12 | 232 | 51 | 63 | 45 73 | 12 | 241 | 55 | 44 | 76 | 66 | | 13 | | | | | | 13 | 232 | 50 | 45 | 57 | 80 | 13 | 237 | 55 | 61 | 56 65 | 13 | 265 | 63 | 68 | 66 | 68 | | 14 | | | | | | 14 | 379 | 101 | 82 | 105 | 91 | 14 | 286 | 43 | 83 | 77 83 | 14 | 344 | 65 | 96 | 91 | 92 | | 15 | | | | | | 15 | 338 | 84 | 86 | 82 | 86 | 15 | 347 | 68 | 75 | 73 131 | 15 | 392 | 97 | 73 | 92 | 130 | | 16 | | | | | | 16 | 305 | 96 | 74 | 80 | 55 | 16 | 686 | 185 | 134 | 230 137 | 16 | 739 | 205 | 150 | 250 | 134 | | 17 | | | | | | 17 | 200 | 57 | 60 | 39 | 44 | 17 | 273 | 113 | 56 | 55 49 | 17 | 296 | 90 | 102 | 63 | 41 | | 18 | 466 | 126 | 147 | 101 | 92 | 18 | 187 | 55 | 38 | 47 | 47 | 18 | 198 | 43 | 48 | 65 42 | 18 | 211 | 50 | 64 | 54 | 43 | | 19 | 453 | 141 | 112 | 103 | 97 | 19 | 114 | 27 | 32 | 34 | 21 | 19 | 113 | 35 | 31 | 20 27 | 19 | 145 | 36 | 43 | 40 | 26 | | 20 | 327 | 119 | 73 | 75 | 60 | 20 | 77 | 17 | 21 | 18 | 21 | 20 | 66 | 21 | 19 | 11 15 | 20 | 74 | 18 | 12 | 18 | 26 | | 21 | 104 | 40 | 32 | 23 | 9 | 21 | 68 | 14 | 14 | 21 | 19 | 21 | 40 | 6 | 12 | 12 10 | 21 | 52 | 11 | 15 | 9 | 17 | | 22 | 104 | 26 | 28 | 28 | 22 | 22 | 52 | 10 | 21 | 13 | 8 | 22 | 48 | 8 | 19 | 11 10 | 22 | 63 | 16 | 25 | 14 | 8 | | 23 | 32 | 13 | 6 | 8 | 5 | 23 | 25 | 4 | 7 | 7 | 7 | 23 | 28 | 6 | 5 | 13 4 | 23 | 56 | 14 | 14 | 14 | 14 | | | 1486 | Total | | | | | 2994 | Total | | • | | | 3330 | Total | | | | 3651 | otal | | | | | ' | AM Peak | Hour Sta | art | | | | AM Peak I | Hour Sta | ırt | | 10:45 | | AM Peak I | Hour Star | t | 11:00 | | AM Peak H | our Stai | t | 11 | 1:00 | | | AM Peak | Hour To | tal | | | | AM Peak I | Hour Tot | al | | 185 | | AM Peak I | Hour Tota | al | 195 | | AM Peak H | our Tota | al | | 195 | | | AM Peak | Hour Fa | ctor | | | | AM Peak I | Hour Fac | ctor | | 94.39 % | | AM Peak I | Hour Fac | tor | 79.92 % | | AM Peak H | our Fac | tor | 8 | 7.05 % | | | PM Peak | Hour Sta | art | | 18:15 | | PM Peak I
 Hour Sta | ırt | | 14:00 | | PM Peak I | Hour Star | t | 16:00 | | PM Peak H | our Stai | t | 10 | 6:00 | | | PM Peak | Hour To | tal | | 481 | | PM Peak I | Hour Tot | al | | 379 | | PM Peak I | Hour Tota | al | 686 | | PM Peak H | our Tota | al | | 739 | | | PM Peak | Hour Fa | ctor | | 81.80 | % | PM Peak I | Hour Fac | ctor | | 90.24 % | | PM Peak I | Hour Fac | tor | 74.57 % | | PM Peak H | our Fac | tor | 73 | 3.90 % | Site Name EB AVILA BEACH BETWEEN SAN MIGUEL ST AND SAN LUIS ST Jurisdiction Study Type Volume (ch1) Location Code 9890 East Direction Date 8/26/2006 Real Time 17:40 Start Date 8/26/2006 Start Time 18:00 00:15 Sample Time 29 Operator Number Machine Number 1012 Wednesday, August 30, 2006 | | 8/30/2006 | 8/31/2006 | | | 9/1/2006 | | 9/2/2006 | | |-------|-------------------------------|-------------------------|-------------|-------|----------------------------|--------------------|---------------------|-------------| | HR | HR | HR HR | | HR | HR | —
HR | HR | | | Begin | Total 00-15 15-30 30-45 45-00 | Begin Total 00-15 15-30 | 30-45 45-00 | Begin | Total 00-15 15-30 30-45 45 | 00 Begin | Total 00-15 15-30 3 | 30-45 45-00 | | 00 | 6 3 0 2 1 | 00 20 6 7 | 4 3 | 00 | 17 3 3 4 | 7 00 | 23 3 3 | 9 8 | | 01 | 15 2 3 8 2 | 01 10 2 3 | 2 3 | 01 | 13 2 8 2 | 1 01 | 19 7 1 | 6 5 | | 02 | 5 2 3 0 0 | 02 16 4 6 | 3 3 | 02 | 9 8 0 0 | 1 02 | 9 3 3 | 0 3 | | 03 | 5 1 1 1 2 | 03 9 0 4 | 4 1 | 03 | 5 0 3 2 | 0 03 | 8 1 2 | 3 2 | | 04 | 9 2 1 2 4 | 04 8 1 2 | 1 4 | 04 | 11 2 2 3 | 4 04 | 8 1 3 | 1 3 | | 05 | 17 2 2 4 9 | 05 22 2 5 | 9 6 | 05 | 15 1 3 5 | 6 05 | 23 4 6 | 6 7 | | 06 | 82 11 27 24 20 | 06 89 13 27 | 32 17 | 06 | 96 12 29 28 | 27 06 | 75 10 25 | 20 20 | | 07 | 67 18 18 21 10 | 07 88 22 18 | 23 25 | 07 | 47 9 11 14 | 13 07 | 53 6 16 | 13 18 | | 80 | 82 16 26 20 20 | 08 89 17 26 | 19 27 | 08 | 97 25 25 27 | 20 08 | 93 18 25 | 27 23 | | 09 | 103 21 22 27 33 | 09 151 26 33 | 41 51 | 09 | 123 28 19 33 | 43 09 | 189 30 48 | 65 46 | | 10 | 178 28 50 46 54 | 10 227 73 49 | 53 52 | 10 | 217 47 55 56 | <u>59</u> 10 | 275 <u>59</u> 73 | 69 74 | | 11 | 184 45 43 51 45 | 11 204 38 47 | 61 58 | 11 | 279 74 60 54 | <mark>91</mark> 11 | 402 87 95 | 111 109 | | 12 | 244 63 61 54 66 | 12 242 58 68 | 55 61 | 12 | 321 71 82 99 | 69 12 | 457 130 119 | 100 108 | | 13 | 306 80 73 65 88 | 13 248 63 59 | 69 57 | 13 | | 05 13 | 464 119 102 | 117 126 | | 14 | 351 74 103 88 86 | 14 310 81 85 | 76 68 | 14 | | 25 14 | 544 130 141 | 132 141 | | 15 | 370 89 61 105 115 | 15 382 89 95 | 76 122 | 15 | | 20 15 | 562 121 148 | 119 174 | | 16 | 613 181 102 221 109 | 16 665 194 126 | 192 153 | 16 | | 06 16 | 539 142 137 | 119 141 | | 17 | 318 102 74 85 57 | 17 363 97 92 | 92 82 | 17 | 337 114 72 91 | 60 17 | 598 139 129 | 130 200 | | 18 | 226 61 68 59 38 | 18 427 81 118 | 99 129 | 18 | 328 61 85 97 | 85 18 | 1033 267 314 | 276 176 | | 19 | 135 38 40 33 24 | 19 370 128 80 | 97 65 | 19 | 231 74 55 49 | 53 19 | 372 129 87 | 89 67 | | 20 | 74 12 19 18 25 | 20 173 61 46 | 36 30 | 20 | 162 44 39 48 | 31 20 | 209 58 46 | 46 59 | | 21 | 69 27 16 13 13 | 21 112 21 41 | 26 24 | 21 | 120 30 26 37 | 27 21 | 152 43 34 | 31 44 | | 22 | 66 18 20 18 10 | 22 91 19 36 | 20 16 | 22 | 124 33 36 30 | 25 22 | 106 26 30 | 29 21 | | 23 | 25 8 0 12 5 | 23 66 21 17 | 14 14 | 23 | 51 19 11 10 | 11 23 | 50 12 17 | 13 8 | | | 3550 Total | 4382 Total | | | 4395 Total | | 6263 Total | AM Peak Hour Start 10:15 | AM Peak Hour Start | 10:00 | | | 00 | AM Peak Hour Start | 11:00 | | | AM Peak Hour Total 195 | AM Peak Hour Total | 227 | | | 279 | AM Peak Hour Total | 402 | | | AM Peak Hour Factor 90.28 9 | | 77.74 % | | | 65 % | AM Peak Hour Factor | 90.54 % | | | PM Peak Hour Start 15:45 | PM Peak Hour Start | 16:00 | | | 45 | PM Peak Hour Start | 17:45 | | | PM Peak Hour Total 619 | PM Peak Hour Total | 665 | | | 87 | PM Peak Hour Total | 1057 | | | PM Peak Hour Factor 70.02 9 | 6 PM Peak Hour Factor | 85.70 % | | PM Peak Hour Factor 92 | .23 % | PM Peak Hour Factor | 84.16 % | Site Name EB AVILA BEACH BETWEEN SAN MIGUEL ST AND SAN LUIS ST Jurisdiction Study Type Volume (ch1) Location Code 9890 East Direction Date 8/26/2006 Real Time 17:40 Start Date 8/26/2006 Start Time 18:00 00:15 Sample Time Operator Number 29 Machine Number 1012 Sunday, September 03, 2006 | | | 9/3 | 3/2006 | | | | | 9/- | 4/2006 | | | | |-------|-----------|----------|--------|-------|-------|------------|-----------------------|---------|--------|-------|-------|--| | HR | HR | | | | | HR | HR | | | | | | | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | | | 00 | 25 | 8 | 8 | 4 | 5 | 00 | 4 | 1 | 0 | 3 | 0 | | | 01 | 14 | 7 | 2 | 4 | 1 | 01 | 5 | 1 | 2 | 2 | 0 | | | 02 | 11 | 3 | 7 | 1 | 0 | 02 | 5 | 1 | 1 | 1 | 2 | | | 03 | 6 | 2 | 1 | 0 | 3 | 03 | 5 | 0 | 3 | 2 | 0 | | | 04 | 7 | 0 | 4 | 0 | 3 | 04 | 6 | 1 | 0 | 1 | 4 | | | 05 | 18 | 2 | 5 | 5 | 6 | 05 | 19 | 1 | 3 | 7 | 8 | | | 06 | 88 | 13 | 20 | 40 | 15 | 06 | 94 | 12 | 29 | 28 | 25 | | | 07 | 67 | 11 | 19 | 20 | 17 | 07 | 74 | 12 | 17 | 16 | 29 | | | 80 | 124 | 24 | 28 | 24 | 48 | 80 | 90 | 23 | 23 | 19 | 25 | | | 09 | 159 | 22 | 33 | 47 | 57 | 09 | 134 | 29 | 31 | 34 | 40 | | | 10 | 258 | 62 | 52 | 63 | 81 | 10 | 123 | 27 | 34 | 29 | 33 | | | 11 | 321 | 87 | 69 | 102 | 63 | 11 | 137 | 31 | 29 | 37 | 40 | | | 12 | 397 | 89 | 99 | 96 | 113 | 12 | | | | | | | | 13 | 412 | 90 | 108 | 108 | 106 | 13 | | | | | | | | 14 | 518 | 123 | 139 | 114 | 142 | 14 | | | | | | | | 15 | 547 | 155 | 118 | 146 | 128 | 15 | | | | | | | | 16 | 451 | 134 | 102 | 103 | 112 | 16 | | | | | | | | 17 | 367 | 110 | 85 | 95 | 77 | 17 | | | | | | | | 18 | 278 | 71 | 74 | 86 | 47 | 18 | | | | | | | | 19 | 147 | 38 | 43 | 38 | 28 | 19 | | | | | | | | 20 | 115 | 25 | 29 | 17 | 44 | 20 | | | | | | | | 21 | 53 | 10 | 18 | 16 | 9 | 21 | | | | | | | | 22 | 53 | 6 | 21 | 19 | 7 | 22 | | | | | | | | 23 | 24 | 6 | 3 | 5 | 10 | 23 | | | | | | | | | 4460 | Total | | | | | 696 | Total | AM Peak I | Hour Sta | art | | 10:45 | | AM Peak I | Hour St | art | | 11:00 | | | | AM Peak I | Hour To | tal | | 339 | | AM Peak Hour Total 13 | | | | | | | | AM Peak I | Hour Fa | ctor | | 83.09 | % | AM Peak I | Hour Fa | ctor | | 85.63 | | | | PM Peak I | Hour Sta | art | | 14:45 | | PM Peak I | Hour St | art | | | | | | PM Peak I | Hour To | tal | | 561 | lour Total | | | | | | | | | PM Peak I | Hour Fa | ctor | | 90.48 | % | PM Peak Hour Factor | | | | | | Site Name EB AVILA BEACH BTW PORT OF SLO & SAN MIGUEL Jurisdiction Study Type Volume (ch1) Location Code 9880 East Direction Date 8/19/2006 Real Time 13:55 Start Date 8/19/2006 Start Time 14:00 Sample Time 00:15 Operator Number 29 Machine Number 1106 Saturday, August 19, 2006 | | | 8/1 | 9/2006 | | | | | | 8/21/2006 | | | | | | 8/22/2006 | | | | | | | | |-------|---------|---------|--------|-------|-------|-------|-----------|---------|-----------|---------|---------|-------|-----------|---------|-----------|--------------|------|----------|---------|-------|-------|---------| | HR | HR | | | | | HR | HR | | | | | HR | HR | | | | HF | HR | | | | | | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | Begin | Total | 00-15 | 15-30 3 | 80-45 4 | 15-00 | Begin | Total | 00-15 | 15-30 3 | 80-45 45-00 | Beg | in Total | 00-15 | 15-30 | 30-45 | 45-00 | | 00 | | | | | | 00 | 33 | 10 | 7 | 6 | 10 | 00 | 8 | 0 | 5 | 3 0 | 00 | 1 | 7 3 | 5 | 6 | 3 | | 01 | | | | | | 01 | 39 | 12 | 19 | 5 | 3 | 01 | 4 | 0 | 2 | 1 1 | 01 | 1 | 1 3 | 3 | 3 | 2 | | 02 | | | | | | 02 | 5 | 2 | 0 | 1 | 2 | 02 | 5 | 1 | 1 | 0 3 | 02 | 1 | 3 2 | 7 | 1 | 3 | | 03 | | | | | | 03 | 5 | 1 | 2 | 1 | 1 | 03 | 3 | 2 | 0 | 1 0 | 03 | | 1 0 | 0 | 0 | 1 | | 04 | | | | | | 04 | 3 | 1 | 2 | 0 | 0 | 04 | 4 | 0 | 1 | 3 0 | 04 | | 1 0 | 0 | 0 | 1 | | 05 | | | | | | 05 | 11 | 1 | 4 | 2 | 4 | 05 | 6 | 0 | 1 | 3 2 | 05 | | 7 0 | 1 | 5 | 1 | | 06 | | | | | | 06 | 15 | 1 | 5 | 2 | 7 | 06 | 25 | 9 | 3 | 3 10 | 06 | 1 | 8 3 | 7 | 3 | 5 | | 07 | | | | | | 07 | 41 | 17 | 13 | 7 | 4 | 07 | 51 | 20 | 17 | 7 7 | 07 | 7 | | 26 | 20 | 12 | | 80 | | | | | | 80 | 38 | 7 | 5 | 8 | 18 | 08 | 34 | 7 | 10 | 14 3 | 30 | | | 14 | 22 | 6 | | 09 | | | | | | 09 | 76 | 18 | 23 | 20 | 15 | 09 | 55 | 12 | 7 | 15 21 | . 09 | | _ | 13 | 20 | 12 | | 10 | | | | | | 10 | 119 | 25 | 25 | 35 | 34 | 10 | 116 | 31 | 28 | 19 38 | 10 | | | | 31 | 18 | | 11 | | | | | | 11 | 158 | 38 | 41 | 35 | 44 | 11 | 125 | 26 | 31 | 36 32 | 11 | | | | 36 | 24 | | 12 | | | | | | 12 | 225 | 62 | 41 | 64 | 58 | 12 | 149 | 32 | 43 | 39 35 | 12 | | - | 36 | 50 | 43 | | 13 | | | | | | 13 | 230 | 68 | 46 | 70 | 46 | 13 | 162 | 34 | 49 | 41 38 | 13 | | | 39 | 40 | 61 | | 14 | 336 | | 80 | | 95 | 14 | 361 | 90 | 91 | 95 | 85 | 14 | 154 | 41 | 34 | 38 41 | 14 | | - | 46 | 40 | 52 | | 15 | 326 | 79 | 67 | 91 | 89 | 15 | 335 | 84 | 99 | 83 | 69 | 15 | 208 | 59 | 56 | 36 57 | 15 | | | 67 | 39 | 56 | | 16 | 265 | 56 | 67 | 73 | 69 | 16 | 266 | 68 | 70 | 61 | 67 | 16 | 188 | 38 | 49 | 45 56 | 16 | | _ | 71 | 102 | 158 | | 17 | 239 | 65 | 76 | 47 | 51 | 17 | 200 | 60 | 44 | 45 | 51 | 17 | 199 | 54 | 55 | 49 41 | 17 | | | 222 | 101 | 81 | | 18 | 200 | 53 | 46 | 57 | 44 | 18 | 147 | 30 | 46 | 35 | 36 | 18 | 117 | 34 | 28 | 21 34 | 18 | | | 43 | 38 | 36 | | 19 | 170 | 57 | 33 | | 26 | 19 | 137 | 43 | 33 | 37 | 24 | 19 | 87 | 25 | 16 | 23 23 | 19 | | | | 32 | 27 | | 20 | 135 | 32 | 33 | | 35 | 20 | 96 | 26 | 17 | 22 | 31 | 20 | 72 | 30 | 15 | 13 14 | 20 | | | 21 | 24 | 11 | | 21 | 124 | 25 | 44 | 24 | 31 | 21 | 85 | 28 | 23 | 17 | 17 | 21 | 32 | 5 | 10 | 8 9 | 21 | 6 | | 14 | 25 | 9 | | 22 | 98 | 39 | 25 | 11 | 23 | 22 | 52 | 17 | 20 | 3 | 12 | 22 | 36 | 12 | 8 | 6 10 | 22 | | | 4 | 10 | 12 | | 23 | 62 | 29 | 16 | 10 | 7 | 23 | 36 | 19 | 8 | 0 | 9 | 23 | 42 | 18 | 6 | 10 8 | 23 | | | 10 | 12 | 6 | | | 1955 | Total | | | | | 2713 | Total | | | | | 1882 | Total | |
 | 263 | 5 Total | AM Peak | | | | | | AM Peak I | | | • | 11:00 | | AM Peak I | | | 10:45 | | AM Peal | | | | 11:00 | | | AM Peak | | | | | | AM Peak I | | | | 158 | | AM Peak I | | | 131 | | AM Peal | | | | 113 | | | AM Peak | | | | | | AM Peak I | | | | 89.77 % | | AM Peak I | | | 86.18 | % | AM Peal | | | | 78.47 % | | | PM Peak | | | | 14:15 | | PM Peak I | | | • | 14:30 | | PM Peak H | | | 16:45 | | PM Peal | | | | 16:30 | | | PM Peak | | | | 355 | | PM Peak I | | | | 363 | | PM Peak H | | | 214 | | PM Peal | | | | 613 | | | PM Peak | Hour Fa | ctor | | 87.87 | % | PM Peak I | Hour Fa | ctor | (| 91.67 % | | PM Peak H | Hour Fa | ctor | 95.54 | % | PM Peal | Hour Fa | actor | | 69.03 % | Site Name EB AVILA BEACH BTW PORT OF SLO & SAN MIGUEL Jurisdiction Study Type Volume (ch1) Location Code 9880 East Direction Date 8/19/2006 Real Time 13:55 Start Date 8/19/2006 Start Time 14:00 00:15 Sample Time Operator Number 29 Machine Number 1106 Wednesday, August 23, 2006 | | 8/23/2006 | | 8/24/2006 | | | 8/25/2006 | | | 6 | | | |-------|-------------------------------|-------|---------------------|-------------|-------|----------------------|-----------|-------|---------------------|-------------|--| | HR | HR | HR | HR | | HR | HR | | HR | HR | | | | Begin | Total 00-15 15-30 30-45 45-00 | Begin | Total 00-15 15-30 3 | 80-45 45-00 | Begin | Total 00-15 15-30 30 | -45 45-00 | Begin | Total 00-15 15-30 | 30-45 45-00 | | | 00 | 26 7 11 2 6 | 00 | 19 0 10 | 7 2 | 00 | 33 12 12 | 7 2 | 00 | 33 7 10 | 9 7 | | | 01 | 13 1 2 6 4 | 01 | 5 0 0 | 2 3 | 01 | 10 4 3 | 2 1 | 01 | 9 2 5 | 2 0 | | | 02 | 12 3 8 1 0 | 02 | 11 1 8 | 1 1 | 02 | 13 3 5 | 1 4 | 02 | 9 2 0 | 3 4 | | | 03 | 5 2 2 0 1 | 03 | 3 2 0 | 1 0 | 03 | 3 3 0 | 0 0 | 03 | 3 3 0 | 0 0 | | | 04 | 4 1 2 1 0 | 04 | 3 1 0 | 1 1 | 04 | 4 1 1 | 0 2 | 04 | 3 3 0 | 0 0 | | | 05 | 14 0 2 7 5 | 05 | 11 2 3 | 4 2 | 05 | 10 2 3 | 3 2 | 05 | 10 1 5 | 1 3 | | | 06 | 33 1 10 12 10 | 06 | 26 3 5 | 7 11 | 06 | 26 7 5 | 9 5 | 06 | 17 2 2 | 4 9 | | | 07 | 78 20 23 17 18 | 07 | 59 20 17 | 14 8 | 07 | 71 23 22 | 18 8 | 07 | 59 21 19 | | | | 80 | 40 9 10 4 17 | 08 | 41 11 8 | 6 16 | 80 | 51 6 13 | 20 12 | 08 | 55 15 13 | 15 12 | | | 09 | 54 14 14 13 13 | 09 | 63 13 15 | 19 16 | 09 | 49 15 9 | 12 13 | 09 | 79 11 26 | | | | 10 | 84 20 22 24 18 | 10 | 80 20 19 | 26 15 | 10 | 90 29 18 | 21 22 | 10 | 129 30 25 | 36 38 | | | 11 | 127 33 29 27 38 | 11 | 133 36 23 | 38 36 | 11 | 136 29 36 | 32 39 | 11 | 157 37 33 | | | | 12 | 193 36 48 53 56 | 12 | 134 28 34 | 34 38 | 12 | 191 40 51 | 67 33 | 12 | 173 33 37 | | | | 13 | 191 45 47 46 53 | 13 | 161 31 38 | 46 46 | 13 | 174 58 37 | 48 31 | 13 | 259 70 56 | 66 67 | | | 14 | 203 49 52 49 53 | 14 | 198 29 42 | 51 76 | 14 | 188 40 56 | 48 44 | 14 | 113 47 66 | | | | 15 | 251 59 76 56 60 | 15 | 251 55 68 | 60 68 | 15 | 258 66 60 | 69 63 | 15 | | | | | 16 | 419 81 63 115 160 | 16 | 434 80 75 | 115 164 | 16 | | 115 155 | 16 | | | | | 17 | 553 140 217 106 90 | 17 | 501 125 206 | 84 86 | 17 | 444 117 170 | 95 62 | 17 | | | | | 18 | 166 59 31 39 37 | 18 | 189 55 27 | 51 56 | 18 | 203 61 49 | 40 53 | 18 | | | | | 19 | 103 28 30 31 14 | 19 | 110 40 25 | 22 23 | 19 | 162 40 35 | 47 40 | 19 | | | | | 20 | 67 19 21 14 13 | 20 | 87 33 21 | 18 15 | 20 | 144 48 29 | 42 25 | 20 | | | | | 21 | 62 25 8 21 8 | 21 | 47 16 16 | 7 8 | 21 | 117 26 33 | 32 26 | 21 | | | | | 22 | 32 8 7 4 13 | 22 | 47 16 15 | 3 13 | 22 | 100 32 32 | 16 20 | 22 | | | | | 23 | 41 20 3 17 1 | 23 | 42 17 11 | 12 2 | 23 | 73 24 14 | 20 15 | 23 | | | | | | 2771 Total | | 2655 Total | | | 2971 Total | | | 1108 Total | AM Peak Hour Start 11:00 | | M Peak Hour Start | 11:00 | | AM Peak Hour Start | 11:00 | | AM Peak Hour Start | 10:45 | | | | AM Peak Hour Total 127 | | M Peak Hour Total | 133 | | AM Peak Hour Total | 136 | | AM Peak Hour Total | 162 | | | | AM Peak Hour Factor 83.55 | | M Peak Hour Factor | 87.50 % | | AM Peak Hour Factor | 87.18 % | | AM Peak Hour Factor | 75.00 % | | | | PM Peak Hour Start 16:30 | | M Peak Hour Start | 16:30 | | PM Peak Hour Start | 16:30 | | PM Peak Hour Start | 13:00 | | | | PM Peak Hour Total 632 | | M Peak Hour Total | 610 | | PM Peak Hour Total | 557 | | PM Peak Hour Total | 259 | | | | PM Peak Hour Factor 72.81 | % P | M Peak Hour Factor | 74.03 % | | PM Peak Hour Factor | 81.91 % | | PM Peak Hour Factor | 92.50 % | | Site Name WB AVILA BEACH BTW PORT OF SLO & SAN MIGUEL Jurisdiction Study Type Volume (2-way) Location Code 9881 Direction West Date 8/19/2006 Real Time 13:55 Start Date 8/19/2006 Start Time 14:00 Sample Time 00:15 29 Operator Number Machine Number 1106 Saturday, August 19, 2006 | | | 8/1 | 9/2006 | | | | | 8/2 | 0/2006 | | | | | 8/2 | 21/2006 | | 8/22/2006 | | | | | | | |-------|---------|----------|--------|-------|-------|-------|-----------|----------|----------|------|---------|-------|---------|---------|---------|-------------|-----------|-----------|----------|---------|--------|---------|--| | HR | HR | | | | | HR | HR | | | | | HR | HR | | | | HR | HR | | | | | | | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | Begin | Total | 00-15 | 15-30 30 |)-45 | 45-00 | Begin | Total | 00-15 | 15-30 | 30-45 45-00 | Begin | Total | 00-15 | 15-30 3 | 0-45 4 | 5-00 | | | 00 | | | | | | 00 | 14 | 4 | 4 | 5 | 1 | 00 | | 2 | 4 | 3 0 | 00 | 7 | 2 | 4 | 1 | 0 | | | 01 | | | | | | 01 | 11 | 1 | 1 | 3 | 6 | 01 | 1 | 1 | 4 | 1 4 | 01 | 10 | 2 | 5 | 0 | 3 | | | 02 | | | | | | 02 | 6 | 2 | 0 | 4 | 0 | 02 | | 7 | 2 | 0 0 | 02 | 3 | 2 | 1 | 0 | 0 | | | 03 | | | | | | 03 | 12 | 3 | 0 | 4 | 5 | 03 | | 2 2 | 0 | 0 0 | 03 | 10 | 0 | 2 | 4 | 4 | | | 04 | | | | | | 04 | 25 | 13 | 7 | 4 | 1 | 04 | 3 | 0 0 | 5 | 10 15 | 04 | 51 | 0 | 8 | 23 | 20 | | | 05 | | | | | | 05 | 57 | 5 | 7 | 17 | 28 | 05 | 19 | 5 8 | 33 | 78 76 | 05 | 608 | 34 | 138 | 179 | 257 | | | 06 | | | | | | 06 | 132 | 41 | 35 | 32 | 24 | 06 | 27 | 96 | 60 | 65 54 | 06 | 802 | 263 | 202 | 185 | 152 | | | 07 | | | | | | 07 | 59 | 11 | 9 | 19 | 20 | 07 | 14 | 36 | 41 | 41 22 | 07 | 329 | 91 | 104 | 65 | 69 | | | 08 | | | | | | 08 | 111 | 21 | 27 | 36 | 27 | 08 | 11 | 41 | 24 | 18 27 | 08 | 135 | 37 | 33 | 32 | 33 | | | 09 | | | | | | 09 | 133 | 27 | 31 | 26 | 49 | 09 | 12 | 35 | 18 | 38 29 | 09 | 103 | 17 | 34 | 26 | 26 | | | 10 | | | | | | 10 | 212 | 48 | 47 | 50 | 67 | 10 | 14 | 39 | 39 | 29 33 | 10 | 118 | 28 | 27 | 29 | 34 | | | 11 | | | | | | 11 | 236 | 54 | 67 | 52 | 63 | 11 | 14 | 34 | 34 | 40 38 | 11 | 162 | 42 | 36 | 42 | 42 | | | 12 | | | | | | 12 | 240 | 39 | 58 | 77 | 66 | 12 | 17 | 51 | 51 | 46 22 | 12 | 166 | 46 | 36 | 39 | 45 | | | 13 | | | | | | 13 | 275 | 68 | 66 | 76 | 65 | 13 | 17 | 2 35 | 47 | 40 50 | 13 | 177 | 31 | 33 | 39 | 74 | | | 14 | 316 | 77 | 97 | 78 | 64 | 14 | 292 | 93 | 58 | 73 | 68 | 14 | 14 | 40 | 32 | 37 36 | 14 | 140 | 39 | 28 | 44 | 29 | | | 15 | 258 | 52 | 56 | 81 | 69 | 15 | 241 | 57 | 68 | 56 | 60 | 15 | 14 | 36 | 38 | 39 33 | 15 | 174 | 33 | 47 | 55 | 39 | | | 16 | 209 | 51 | 44 | 60 | 54 | 16 | 220 | 54 | 62 | 53 | 51 | 16 | 11 | 37 | 28 | 26 19 | 16 | 128 | 33 | 30 | 39 | 26 | | | 17 | 257 | 65 | 67 | 54 | 71 | 17 | 185 | 54 | 31 | 46 | 54 | 17 | 12 | 33 | 25 | 37 33 | 17 | 136 | 28 | 31 | 35 | 42 | | | 18 | 222 | 70 | 42 | 67 | 43 | 18 | 173 | 39 | 55 | 42 | 37 | 18 | 11 | 32 | 16 | 41 24 | 18 | 148 | 27 | 29 | 49 | 43 | | | 19 | 193 | 54 | 60 | 46 | 33 | 19 | 156 | 32 | 44 | 40 | 40 | 19 | 8 | 1 26 | 23 | 19 16 | 19 | 85 | 26 | 19 | 30 | 10 | | | 20 | 134 | 31 | 38 | 35 | 30 | 20 | 66 | 21 | 16 | 16 | 13 | 20 | 6 | 1 22 | 7 | 14 21 | 20 | 53 | 14 | 16 | 9 | 14 | | | 21 | 117 | 38 | 23 | 20 | 36 | 21 | 66 | 22 | 11 | 12 | 21 | 21 | 5 | 16 | 8 | 25 10 | 21 | 69 | 9 | 9 | 19 | 32 | | | 22 | 94 | 30 | 24 | 26 | 14 | 22 | 32 | 13 | 6 | 10 | 3 | 22 | 4 | 23 | 2 | 10 5 | 22 | 49 | 19 | 13 | 13 | 4 | | | 23 | 46 | 6 | 18 | 19 | 3 | 23 | 15 | 3 | 3 | 5 | 4 | 23 | 1: | 3 | 4 | 6 0 | 23 | 29 | 4 | 4 | 14 | 7 | | | | 1846 | Total | | • | | | 2969 | Total | | • | | | 243 | Total | | | | 3692 | Total | | | | | | | | • | AM Peak | Hour Sta | art | | | | AM Peak I | Hour Sta | art | | 10:45 | | AM Peal | Hour St | art | 05:30 | | AM Peak H | lour Sta | rt | 0 | 5:45 | | | | AM Peak | Hour To | tal | | | | AM Peak I | Hour To | tal | | 240 | | AM Peal | Hour To | otal | 310 | | AM Peak H | lour Tot | al | | 907 | | | | AM Peak | Hour Fa | ctor | | | | AM Peak I | Hour Fa | ctor | | 89.55 % | | AM Peal | Hour Fa | actor | 80.73 % | | AM Peak H | lour Fac | tor | 8 | 86.22 % | | | | PM Peak | Hour Sta | art | | 14:00 | | PM Peak I | Hour Sta | art | | 13:15 | | PM Peal | Hour St | art | 13:15 | | PM Peak H | lour Sta | rt | 1 | 3:15 | | | | PM Peak | Hour To | tal | | 316 | | PM Peak I | Hour To | tal | | 300 | | PM Peal | Hour To | otal | 177 | | PM Peak H | lour Tot | al | | 185 | | | | PM Peak | Hour Fa | ctor | | 81.44 | % | PM Peak I | Hour Fa | ctor | | 80.65 % | | PM Peal | Hour Fa | actor | 88.50 % | | PM Peak H | lour Fac | tor | 6 | 32.50 % | | Site Name WB AVILA BEACH BTW PORT OF SLO & SAN MIGUEL Jurisdiction Study Type Volume (2-way) Location Code 9881 West Direction Date 8/19/2006 Real Time 13:55 Start Date 8/19/2006 Start Time 14:00 00:15 Sample Time 29 Operator Number Machine Number 1106 Wednesday, August 23, 2006 | | 8/23/2006 | | 8/24/2006 | | | 8/25/2006 | | | 8/26 | /2006 | |-------|-------------------------|-------------|----------------------|-----------|-------|-----------------------|----------|-------|-------------------|-------------------| | HR | HR | HR | HR | | HR | HR | | HR | HR | | | Begin | Total 00-15 15-30 30-45 | 45-00 Begin | Total 00-15 15-30 30 | -45 45-00 | Begin | Total 00-15 15-30 30- | 45 45-00 | Begin | Total 00-15 1 | 15-30 30-45 45-00 | | 00 | 12 7 2 2 | 1 00 | 9 2 3 | 2 2 |
00 | 7 1 0 | 4 2 | 00 | 14 8 | 0 2 4 | | 01 | 12 3 4 0 | 5 01 | 5 0 2 | 1 2 | 01 | 8 0 0 | 1 7 | 01 | 11 0 | 5 4 2 | | 02 | 3 0 0 0 | 3 02 | 4 4 0 | 0 0 | 02 | 9 8 1 | 0 0 | 02 | 9 6 | 0 0 3 | | 03 | 7 1 0 4 | 2 03 | 9 0 0 | 4 5 | 03 | 11 2 0 | 0 9 | 03 | 5 0 | 0 4 1 | | 04 | 63 10 8 26 | 19 04 | 66 2 12 | 25 27 | 04 | 72 5 11 | 26 30 | 04 | 26 0 | 3 11 12 | | 05 | 674 46 126 219 | 283 05 | 653 45 110 | 214 284 | 05 | 582 40 111 2 | 218 213 | 05 | 102 16 | 14 15 57 | | 06 | 791 281 193 181 | 136 06 | 815 287 205 | 197 126 | 06 | 764 272 180 1 | 65 147 | 06 | 154 57 | 42 39 16 | | 07 | 324 102 92 90 | 40 07 | 324 79 105 | 90 50 | 07 | 333 98 110 | 74 51 | 07 | 94 31 | 12 35 16 | | 80 | 150 57 35 29 | | 164 54 32 | 31 47 | 80 | 115 33 34 | 31 17 | 08 | 131 25 | 35 34 37 | | 09 | 131 37 13 32 | | 135 33 39 | 22 41 | 09 | 111 23 30 | 12 46 | 09 | 173 38 | 39 38 58 | | 10 | 125 29 31 36 | 29 10 | 157 63 31 | 26 37 | 10 | | 33 50 | 10 | 180 58 | 38 40 44 | | 11 | 168 45 33 54 | | 159 43 41 | 45 30 | 11 | | 57 44 | 11 | 190 48 | 54 45 43 | | 12 | 208 49 50 60 | 49 12 | 191 58 48 | 29 56 | 12 | | 41 49 | 12 | 248 59 | 64 60 65 | | 13 | 189 44 50 47 | 48 13 | 149 39 38 | 43 29 | 13 | | 47 49 | 13 | 279 74 | 64 67 74 | | 14 | 141 35 26 31 | 49 14 | 169 41 58 | 40 30 | 14 | 159 50 43 | 27 39 | 14 | 123 66 | 57 | | 15 | 159 36 31 49 | | 172 42 36 | 56 38 | 15 | | 40 38 | 15 | | | | 16 | 118 29 37 30 | | 91 21 22 | 24 24 | 16 | | 33 40 | 16 | | | | 17 | 108 23 21 33 | | 102 24 16 | 30 32 | 17 | | 40 53 | 17 | | | | 18 | 109 23 25 35 | | 114 26 23 | 36 29 | 18 | | 72 59 | 18 | | | | 19 | 82 32 23 13 | 14 19 | 99 28 24 | 18 29 | 19 | 196 62 41 | 51 42 | 19 | | | | 20 | 73 37 15 12 | | 62 19 18 | 12 13 | 20 | | 29 23 | 20 | | | | 21 | 55 6 11 15 | | 76 15 15 | 21 25 | 21 | | 22 29 | 21 | | | | 22 | 49 22 12 5 | | 80 27 23 | 21 9 | 22 | | 15 11 | 22 | | | | 23 | 12 0 0 8 | 4 23 | 30 8 7 | 9 6 | 23 | 42 14 10 | 12 6 | 23 | | | | | 3763 Total | | 3835 Total | | | 4108 Total | | | 1739 Total | AM Peak Hour Start | 05:30 | AM Peak Hour Start | 05:30 | | AM Peak Hour Start | 05:30 | | AM Peak Hour Star | rt 05:45 | | | AM Peak Hour Total | 976 | AM Peak Hour Total | 990 | | AM Peak Hour Total | 883 | | AM Peak Hour Tota | al 195 | | | AM Peak Hour Factor | 86.22 % | AM Peak Hour Factor | 86.24 % | | AM Peak Hour Factor | 81.16 % | | AM Peak Hour Fac | tor 85.53 % | | | PM Peak Hour Start | 12:00 | PM Peak Hour Start | 12:00 | | PM Peak Hour Start | 18:15 | | PM Peak Hour Star | | | | PM Peak Hour Total | 208 | PM Peak Hour Total | 191 | | PM Peak Hour Total | 246 | | PM Peak Hour Tota | al 279 | | | PM Peak Hour Factor | 86.67 % | PM Peak Hour Factor | 82.33 % | | PM Peak Hour Factor | 85.42 % | | PM Peak Hour Fac | tor 94.26 % | Site Name EB AVILA BEACH BTW PORT OF SLO & SAN MIGUEL Jurisdiction Study Type Volume (ch1) Location Code 9880 East Direction Date 8/19/2006 Real Time 13:55 Start Date 8/19/2006 Start Time 14:00 Sample Time 00:15 Operator Number 29 Machine Number 1106 Saturday, August 19, 2006 | | | 8/1 | 9/2006 | | | | | 8/2 | 0/2006 | | | | | 8/2 | 1/2006 | | | | 8/2 | 22/2006 | | | |-------|---------|---------|--------|-------|-------|-------|-----------|---------|---------|--------|---------|-------|-----------|---------|---------|--------------|------|---------|---------|---------|-------|---------| | HR | HR | | | | | HR | HR | | | | | HR | HR | | | | HR | HR | | | | | | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | Begin | Total | 00-15 | 15-30 3 | 0-45 4 | 15-00 | Begin | Total | 00-15 | 15-30 3 | 80-45 45-00 | Beg | n Total | 00-15 | 15-30 | 30-45 | 45-00 | | 00 | | | | | | 00 | 33 | 10 | 7 | 6 | 10 | 00 | 8 | 0 | 5 | 3 0 | 00 | 1 | 3 | 5 | 6 | 3 | | 01 | | | | | | 01 | 39 | 12 | 19 | 5 | 3 | 01 | 4 | 0 | 2 | 1 1 | 01 | 1 | 3 | 3 | 3 | 2 | | 02 | | | | | | 02 | 5 | 2 | 0 | 1 | 2 | 02 | 5 | 1 | 1 | 0 3 | 02 | 1: | 3 2 | 7 | 1 | 3 | | 03 | | | | | | 03 | 5 | 1 | 2 | 1 | 1 | 03 | 3 | 2 | 0 | 1 0 | 03 | | 0 | 0 | 0 | 1 | | 04 | | | | | | 04 | 3 | 1 | 2 | 0 | 0 | 04 | 4 | 0 | 1 | 3 0 | 04 | | 0 | 0 | 0 | 1 | | 05 | | | | | | 05 | 11 | 1 | 4 | 2 | 4 | 05 | 6 | 0 | 1 | 3 2 | 05 | | 0 | 1 | 5 | 1 | | 06 | | | | | | 06 | 15 | 1 | 5 | 2 | 7 | 06 | 25 | 9 | 3 | 3 10 | 06 | 18 | 3 | 7 | 3 | 5 | | 07 | | | | | | 07 | 41 | 17 | 13 | 7 | 4 | 07 | 51 | 20 | 17 | 7 7 | 07 | 7 | | 26 | 20 | 12 | | 80 | | | | | | 80 | 38 | 7 | 5 | 8 | 18 | 08 | 34 | 7 | 10 | 14 3 | 08 | 40 | | 14 | 22 | 6 | | 09 | | | | | | 09 | 76 | 18 | 23 | 20 | 15 | 09 | 55 | 12 | 7 | 15 21 | . 09 | 58 | | 13 | 20 | 12 | | 10 | | | | | | 10 | 119 | 25 | 25 | 35 | 34 | 10 | 116 | 31 | 28 | 19 38 | 10 | 8 | | 19 | 31 | 18 | | 11 | | | | | | 11 | 158 | 38 | 41 | 35 | 44 | 11 | 125 | 26 | 31 | 36 32 | 11 | 113 | | | 36 | 24 | | 12 | | | | | | 12 | 225 | 62 | 41 | 64 | 58 | 12 | 149 | 32 | 43 | 39 35 | 12 | 160 | _ | 36 | 50 | 43 | | 13 | | | | | | 13 | 230 | 68 | 46 | 70 | 46 | 13 | 162 | 34 | 49 | 41 38 | 13 | 173 | | 39 | 40 | 61 | | 14 | 336 | | 80 | | 95 | 14 | 361 | 90 | 91 | 95 | 85 | 14 | 154 | 41 | 34 | 38 41 | 14 | 178 | _ | 46 | 40 | 52 | | 15 | 326 | 79 | 67 | 91 | 89 | 15 | 335 | 84 | 99 | 83 | 69 | 15 | 208 | 59 | 56 | 36 57 | 15 | 22 | | 67 | 39 | 56 | | 16 | 265 | 56 | 67 | 73 | 69 | 16 | 266 | 68 | 70 | 61 | 67 | 16 | 188 | 38 | 49 | 45 56 | 16 | 38 | | 71 | 102 | 158 | | 17 | 239 | 65 | 76 | 47 | 51 | 17 | 200 | 60 | 44 | 45 | 51 | 17 | 199 | 54 | 55 | 49 41 | 17 | 53 | | 222 | 101 | 81 | | 18 | 200 | 53 | 46 | 57 | 44 | 18 | 147 | 30 | 46 | 35 | 36 | 18 | 117 | 34 | 28 | 21 34 | 18 | 178 | | 43 | 38 | 36 | | 19 | 170 | 57 | 33 | | 26 | 19 | 137 | 43 | 33 | 37 | 24 | 19 | 87 | 25 | 16 | 23 23 | 19 | 120 | | 35 | 32 | 27 | | 20 | 135 | 32 | 33 | | 35 | 20 | 96 | 26 | 17 | 22 | 31 | 20 | 72 | 30 | 15 | 13 14 | 20 | 8 | | 21 | 24 | 11 | | 21 | 124 | 25 | 44 | 24 | 31 | 21 | 85 | 28 | 23 | 17 | 17 | 21 | 32 | 5 | 10 | 8 9 | 21 | 6- | | 14 | 25 | 9 | | 22 | 98 | 39 | 25 | 11 | 23 | 22 | 52 | 17 | 20 | 3 | 12 | 22 | 36 | 12 | 8 | 6 10 | 22 | 3 | | 4 | 10 | 12 | | 23 | 62 | 29 | 16 | 10 | 7 | 23 | 36 | 19 | 8 | 0 | 9 | 23 | 42 | 18 | 6 | 10 8 | 23 | 50 | | 10 | 12 | 6 | | | 1955 | Total | | | | | 2713 | Total | | | | | 1882 | Total | | | | 263 | Total | AM Peak | | | | | | AM Peak I | | | | 11:00 | | AM Peak I | | | 10:45 | | AM Peak | | | | 11:00 | | | AM Peak | | | | | | AM Peak I | | | | 158 | | AM Peak I | | | 131 | | AM Peak | | | | 113 | | | AM Peak | | | | | | AM Peak I | | | | 89.77 % | | AM Peak I | | | 86.18 | % | AM Peak | | | | 78.47 % | | | PM Peak | | | | 14:15 | | PM Peak H | | | • | 14:30 | | PM Peak I | | | 16:45 | | PM Peak | | | | 16:30 | | | PM Peak | Hour To | tal | | 355 | | PM Peak H | Hour To | tal | | 363 | | PM Peak I | Hour To | tal | 214 | | PM Peak | | | | 613 | | | PM Peak | Hour Fa | ctor | | 87.87 | % | PM Peak I | Hour Fa | ctor | (| 91.67 % | | PM Peak I | Hour Fa | ctor | 95.54 | % | PM Peak | Hour Fa | actor | | 69.03 % | Site Name EB AVILA BEACH BTW PORT OF SLO & SAN MIGUEL Jurisdiction Study Type Volume (ch1) Location Code 9880 East Direction Date 8/19/2006 Real Time 13:55 Start Date 8/19/2006 Start Time 14:00 00:15 Sample Time Operator Number 29 Machine Number 1106 Wednesday, August 23, 2006 | | 8/23/2006 | | 8/24/200 | 6 | | 8/25/2006 | | | 8/26/200 | 6 | |-------|-------------------------------|-------|--------------------|-------------|-------|---------------------|-------------|-------|---------------------|-------------| | HR | HR | HR | HR | | HR | HR | | HR | HR | | | Begin | Total 00-15 15-30 30-45 45-00 | Begin | Total 00-15 15-30 | 30-45 45-00 | Begin | Total 00-15 15-30 3 | 30-45 45-00 | Begin | Total 00-15 15-30 | 30-45 45-00 | | 00 | 26 7 11 2 6 | 00 | 19 0 10 | 0 7 2 | 00 | 33 12 12 | 7 2 | 00 | 33 7 10 | 9 7 | | 01 | 13 1 2 6 4 | 01 | 5 0 | 0 2 3 | 01 | 10 4 3 | 2 1 | 01 | 9 2 5 | 2 0 | | 02 | 12 3 8 1 0 | 02 | 11 1 | 8 1 1 | 02 | 13 3 5 | 1 4 | 02 | 9 2 (| 3 4 | | 03 | 5 2 2 0 1 | 03 | 3 2 | 0 1 0 | 03 | 3 3 0 | 0 0 | 03 | 3 3 (| 0 0 | | 04 | 4 1 2 1 0 | 04 | 3 1 | 0 1 1 | 04 | 4 1 1 | 0 2 | 04 | 3 3 (| 0 0 | | 05 | 14 0 2 7 5 | 05 | 11 2 | 3 4 2 | 05 | 10 2 3 | 3 2 | 05 | 10 1 5 | 1 3 | | 06 | 33 1 10 12 10 | 06 | 26 3 | 5 7 11 | 06 | 26 7 5 | 9 5 | 06 | 17 2 2 | 2 4 9 | | 07 | 78 20 23 17 18 | 07 | 59 20 1 | 7 14 8 | 07 | 71 23 22 | 18 8 | 07 | 59 21 19 | 10 9 | | 80 | 40 9 10 4 17 | 08 | 41 11 | 8 6 16 | 08 | 51 6 13 | 20 12 | 80 | 55 15 13 | 15 12 | | 09 | 54 14 14 13 13 | 09 | 63 13 1 | 5 19 16 | 09 | 49 15 9 | 12 13 | 09 | 79 11 26 | 18 24 | | 10 | 84 20 22 24 18 | 10 | 80 20 1 | 9 26 15 | 10 | 90 29 18 | 21 22 | 10 | 129 30 25 | 36 38 | | 11 | 127 33 29 27 38 | 11 | 133 36 23 | 3 38 36 | 11 | 136 29 36 | 32 39 | 11 | 157 37 33 | 33 | | 12 | 193 36 48 53 56 | 12 | 134 28 3 | 4 34 38 | 12 | 191 40 51 | 67 33 | 12 | 173 33 37 | 56 47 | | 13 | 191 45 47 46 53 | 13 | 161 31 3 | 8 46 46 | 13 | 174 58 37 | 48 31 | 13 | 259 70 56 | 66 67 | | 14 | 203 49 52 49 53 | 14 | 198 29 42 | 2 51 76 | 14 | 188 40 56 | 48 44 | 14 | 113 47 66 | 6 | | 15 | 251 59 76 56 60 | 15 | 251 55 68 | 8 60 68 | 15 | 258 66 60 | 69 63 | 15 | | | | 16 | 419 81 63 115 160 | 16 | 434 80 7 | 5 115 164 | 16 | 421 82 69 | 115 155 | 16 | | | | 17 | 553 140 217 106 90 | 17 | 501 125 200 | 6 84 86 | 17 | 444 117 170 | 95 62 | 17 | | | | 18 | 166 59 31 39 37 | 18 | 189 55 2 | 7 51 56 | 18 | 203 61 49 | 40 53 | 18 | | | | 19 | 103 28 30 31 14 | 19 | 110 40 2 | 5 22 23 | 19 | 162 40 35 | 47 40 | 19 | | | | 20 | 67 19 21 14 13 | 20 | 87 33 2 | 1 18 15 | 20 | 144 48 29 | 42 25 | 20 | | | | 21 | 62 25 8 21 8 | 21 | 47 16 10 | 6 7 8 | 21 | 117 26 33 | 32 26 | 21 | | | | 22 | 32 8 7 4 13 | 22 | 47 16 1 | 5 3 13 | 22 | 100 32 32 | 16 20 | 22 | | | | 23 | 41 20 3 17 1 | 23 | 42 17 1 | 1 12 2 | 23 | 73 24 14 | 20 15 | 23 | | | | ļ | 2771 Total | | 2655 Total | | | 2971 Total |
 | 1108 Total | <u> </u> | | | | | <u>-</u> | AM Peak Hour Start 11:00 | AM | M Peak Hour Start | 11:00 | | AM Peak Hour Start | 11:00 | | AM Peak Hour Start | 10:45 | | | AM Peak Hour Total 127 | AN | M Peak Hour Total | 133 | | AM Peak Hour Total | 136 | | AM Peak Hour Total | 162 | | | AM Peak Hour Factor 83.55 9 | 6 AN | M Peak Hour Factor | 87.50 % | | AM Peak Hour Factor | 87.18 % | | AM Peak Hour Factor | 75.00 % | | | PM Peak Hour Start 16:30 | PN | M Peak Hour Start | 16:30 | | PM Peak Hour Start | 16:30 | | PM Peak Hour Start | 13:00 | | | PM Peak Hour Total 632 | PN | M Peak Hour Total | 610 | | PM Peak Hour Total | 557 | | PM Peak Hour Total | 259 | | | PM Peak Hour Factor 72.81 9 | 6 PN | M Peak Hour Factor | 74.03 % | | PM Peak Hour Factor | 81.91 % | | PM Peak Hour Factor | 92.50 % | Site Name WB AVILA BEACH BTW PORT OF SLO & SAN MIGUEL Jurisdiction Study Type Volume (2-way) Location Code 9881 West Direction Date 8/19/2006 Real Time 13:55 Start Date 8/19/2006 Start Time 14:00 00:15 Sample Time Operator Number 29 Machine Number 1106 Saturday, August 19, 2006 | | | 8/1 | 9/2006 | | | | | 8/2 | 20/2006 | | | | | 8/2 | 1/2006 | | | | 8/2 | 2/2006 | | | |-------|---------|---------|--------|-------|-------|-------|---------|---------|---------|--------|---------|-------|-----------|----------|--------|-------------|------|---------|---------|--------|------|------------------| | HR | HR | | | | | HR | HR | | | | | HR | HR | | | | HR | HR | | | | | | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | Begin | Total | 00-15 | 15-30 3 | 0-45 4 | 5-00 | Begin | Total | 00-15 | 15-30 | 30-45 45-00 | Begi | n Total | 00-15 | 15-30 | 0-45 | 15-00 | | 00 | | | | | | 00 | 14 | 4 | 4 | 5 | 1 | 00 | 9 | 2 | 4 | 3 0 | 00 | 7 | 2 | 4 | 1 | 0 | | 01 | | | | | | 01 | 11 | 1 | 1 | 3 | 6 | 01 | 10 | 1 | 4 | 1 4 | 01 | 10 | 2 | 5 | 0 | 3 | | 02 | | | | | | 02 | 6 | 2 | 0 | 4 | 0 | 02 | 9 | 7 | 2 | 0 0 | 02 | 3 | 2 | 1 | 0 | 0 | | 03 | | | | | | 03 | 12 | 3 | 0 | 4 | 5 | 03 | 2 | 2 | 0 | 0 0 | 03 | 10 | 0 | 2 | 4 | 4 | | 04 | | | | | | 04 | 25 | 13 | 7 | 4 | 1 | 04 | 30 | 0 | 5 | 10 15 | 04 | 51 | 0 | 8 | 23 | 20 | | 05 | | | | | | 05 | 57 | 5 | 7 | 17 | 28 | 05 | 195 | 8 | 33 | 78 76 | 05 | 608 | 34 | 138 | 179 | 257 | | 06 | | | | | | 06 | 132 | 41 | 35 | 32 | 24 | 06 | 275 | 96 | 60 | 65 54 | 06 | 802 | 263 | 202 | 185 | 152 | | 07 | | | | | | 07 | 59 | 11 | 9 | 19 | 20 | 07 | 140 | 36 | 41 | 41 22 | 07 | 329 | | 104 | 65 | 69 | | 80 | | | | | | 08 | 111 | 21 | 27 | 36 | 27 | 08 | 110 | 41 | 24 | 18 27 | 08 | 135 | | 33 | 32 | 33 | | 09 | | | | | | 09 | 133 | 27 | 31 | 26 | 49 | 09 | 120 | 35 | 18 | 38 29 | 09 | 103 | | 34 | 26 | 26 | | 10 | | | | | | 10 | 212 | 48 | 47 | 50 | 67 | 10 | 140 | 39 | 39 | 29 33 | 10 | 118 | | 27 | 29 | 34 | | 11 | | | | | | 11 | 236 | 54 | 67 | 52 | 63 | 11 | 146 | 34 | 34 | 40 38 | 11 | 162 | | 36 | 42 | 42 | | 12 | | | | | | 12 | 240 | 39 | 58 | 77 | 66 | 12 | 170 | 51 | 51 | 46 22 | 12 | 166 | _ | 36 | 39 | 45 | | 13 | | | | | | 13 | 275 | 68 | 66 | 76 | 65 | 13 | 172 | 35 | 47 | 40 50 | 13 | 177 | | 33 | 39 | 74 | | 14 | 316 | 77 | 97 | 78 | 64 | 14 | 292 | 93 | 58 | 73 | 68 | 14 | 145 | 40 | 32 | 37 36 | 14 | 140 | | 28 | 44 | 29 | | 15 | 258 | 52 | 56 | 81 | 69 | 15 | 241 | 57 | 68 | 56 | 60 | 15 | 146 | 36 | 38 | 39 33 | 15 | 174 | 33 | 47 | 55 | 39 | | 16 | 209 | 51 | 44 | 60 | 54 | 16 | 220 | 54 | 62 | 53 | 51 | 16 | 110 | 37 | 28 | 26 19 | 16 | 128 | | 30 | 39 | 26 | | 17 | 257 | 65 | 67 | 54 | 71 | 17 | 185 | 54 | 31 | 46 | 54 | 17 | 128 | 33 | 25 | 37 33 | 17 | 136 | _ | 31 | 35 | 42 | | 18 | 222 | 70 | 42 | 67 | 43 | 18 | 173 | 39 | 55 | 42 | 37 | 18 | 113 | 32 | 16 | 41 24 | 18 | 148 | | 29 | 49 | 43 | | 19 | 193 | 54 | 60 | 46 | 33 | 19 | 156 | 32 | 44 | 40 | 40 | 19 | 84 | 26 | 23 | 19 16 | 19 | 85 | 26 | 19 | 30 | 10 | | 20 | 134 | 31 | 38 | 35 | 30 | 20 | 66 | 21 | 16 | 16 | 13 | 20 | 64 | 22 | 7 | 14 21 | 20 | 53 | | 16 | 9 | 14 | | 21 | 117 | 38 | 23 | 20 | 36 | 21 | 66 | 22 | 11 | 12 | 21 | 21 | 59 | 16 | 8 | 25 10 | 21 | 69 | 9 | 9 | 19 | 32 | | 22 | 94 | 30 | 24 | 26 | 14 | 22 | 32 | 13 | 6 | 10 | 3 | 22 | 40 | 23 | 2 | 10 5 | 22 | 49 | 19 | 13 | 13 | 4 | | 23 | 46 | | 18 | 19 | 3 | 23 | 15 | 3 | 3 | 5 | 4 | 23 | 13 | 3 | 4 | 6 0 | 23 | 29 | | 4 | 14 | 7 | | | 1846 | Total | | | | | 2969 | Total | | | | | 2430 | Total | | | | 3692 | Total | AM Peak | Hour St | art | | | | AM Peak | Hour St | art | 1 | 10:45 | | AM Peak F | lour Sta | art | 05:30 | | AM Peak | Hour St | art | 1 | 05:45 | | | AM Peak | Hour To | tal | | | | AM Peak | | | | 240 | | AM Peak H | | | 310 | | AM Peak | | | | 907 | | | AM Peak | | | | | | AM Peak | | | 8 | 39.55 % | | AM Peak H | | | 80.73 | % | AM Peak | | | | 86.22 % | | | PM Peak | Hour St | art | | 14:00 | | PM Peak | Hour St | art | 1 | 13:15 | | PM Peak F | lour Sta | art | 13:15 | | PM Peak | Hour St | art | | 13:15 | | | PM Peak | Hour To | tal | | 316 | | PM Peak | Hour To | tal | | 300 | | PM Peak F | lour To | tal | 177 | | PM Peak | Hour To | tal | | 185 | | | PM Peak | Hour Fa | ctor | | 81.44 | % | PM Peak | Hour Fa | ctor | 8 | 30.65 % | | PM Peak F | lour Fa | ctor | 88.50 | % | PM Peak | Hour Fa | ctor | 1 | 62.50 % | Site Name WB AVILA BEACH BTW PORT OF SLO & SAN MIGUEL Jurisdiction Study Type Volume (2-way) Location Code 9881 West Direction Date 8/19/2006 Real Time 13:55 Start Date 8/19/2006 Start Time 14:00 00:15 Sample Time 29 Operator Number Machine Number 1106 Wednesday, August 23, 2006 | | 8/23/2006 | | 8/24/2006 | | | 8/25/2006 | | | 8/26 | /2006 | |-------|-------------------------|---------------|----------------------|-----------|-------|-----------------------|----------|-------|-------------------|-------------------| | HR | HR | HR | HR | | HR | HR | | HR | HR | | | Begin | Total 00-15 15-30 30-45 | 45-00 Begin | Total 00-15 15-30 30 | -45 45-00 | Begin | Total 00-15 15-30 30- | 45 45-00 | Begin | Total 00-15 1 | 15-30 30-45 45-00 | | 00 | 12 7 2 2 | 1 00 | 9 2 3 | 2 2 | 00 | 7 1 0 | 4 2 | 00 | 14 8 | 0 2 4 | | 01 | 12 3 4 0 | 5 01 | 5 0 2 | 1 2 | 01 | 8 0 0 | 1 7 | 01 | 11 0 | 5 4 2 | | 02 | 3 0 0 0 | 3 02 | 4 4 0 | 0 0 | 02 | 9 8 1 | 0 0 | 02 | 9 6 | 0 0 3 | | 03 | 7 1 0 4 | 2 03 | 9 0 0 | 4 5 | 03 | 11 2 0 | 0 9 | 03 | 5 0 | 0 4 1 | | 04 | 63 10 8 26 | 19 04 | 66 2 12 | 25 27 | 04 | 72 5 11 | 26 30 | 04 | 26 0 | 3 11 12 | | 05 | 674 46 126 219 | 283 05 | 653 45 110 | 214 284 | 05 | 582 40 111 2 | 218 213 | 05 | 102 16 | 14 15 57 | | 06 | 791 281 193 181 | 136 06 | 815 287 205 | 197 126 | 06 | 764 272 180 1 | 65 147 | 06 | 154 57 | 42 39 16 | | 07 | 324 102 92 90 | 40 07 | 324 79 105 | 90 50 | 07 | 333 98 110 | 74 51 | 07 | 94 31 | 12 35 16 | | 80 | 150 57 35 29 | | 164 54 32 | 31 47 | 80 | 115 33 34 | 31 17 | 08 | 131 25 | 35 34 37 | | 09 | 131 37 13 32 | | 135 33 39 | 22 41 | 09 | 111 23 30 | 12 46 | 09 | 173 38 | 39 38 58 | | 10 | 125 29 31 36 | 29 10 | 157 63 31 | 26 37 | 10 | | 33 50 | 10 | 180 58 | 38 40 44 | | 11 | 168 45 33 54 | | 159 43 41 | 45 30 | 11 | | 57 44 | 11 | 190 48 | 54 45 43 | | 12 | 208 49 50 60 | 49 12 | 191 58 48 | 29 56 | 12 | | 41 49 | 12 | 248 59 | 64 60 65 | | 13 | 189 44 50 47 | 48 13 | 149 39 38 | 43 29 | 13 | | 47 49 | 13 | 279 74 | 64 67 74 | | 14 | 141 35 26 31 | 49 14 | 169 41 58 | 40 30 | 14 | 159 50 43 | 27 39 | 14 | 123 66 | 57 | | 15 | 159 36 31 49 | | 172 42 36 | 56 38 | 15 | | 40 38 | 15 | | | | 16 | 118 29 37 30 | | 91 21 22 | 24 24 | 16 | | 33 40 | 16 | | | | 17 | 108 23 21 33 | | 102 24 16 | 30 32 | 17 | | 40 53 | 17 | | | | 18 | 109 23 25 35 | | 114 26 23 | 36 29 | 18 | | 72 59 | 18 | | | | 19 | 82 32 23 13 | 14 19 | 99 28 24 | 18 29 | 19 | 196 62 41 | 51 42 | 19 | | | | 20 | 73 37 15 12 | | 62 19 18 | 12 13 | 20 | | 29 23 | 20 | | | | 21 | 55 6 11 15 | | 76 15 15 | 21 25 | 21 | | 22 29 | 21 | | | | 22 | 49 22 12 5 | | 80 27 23 | 21 9 | 22 | | 15 11 | 22 | | | | 23 | 12 0 0 8 | 4 23 | 30 8 7 | 9 6 | 23 | 42 14 10 | 12 6 | 23 | | | | | 3763 Total | | 3835 Total | | | 4108 Total | | | 1739 Total | AM Peak Hour Start | 05:30 | AM Peak Hour Start | 05:30 | | AM Peak Hour Start | 05:30 | | AM Peak Hour Star | rt 05:45 | | | AM Peak Hour Total | 976 | AM Peak Hour Total | 990 | | AM Peak Hour Total | 883 | | AM Peak Hour Tota | al 195 | | | AM Peak Hour Factor | 86.22 % | AM Peak Hour Factor | 86.24 % | | AM Peak Hour Factor | 81.16 % | | AM Peak Hour Fac | tor 85.53 % | | | PM Peak Hour Start | 12:00 | PM Peak Hour Start | 12:00 | | PM Peak Hour Start | 18:15 | | PM Peak Hour Star | | | | PM Peak Hour Total | 208 | PM Peak Hour Total | 191 | | PM Peak Hour Total | 246 | | PM Peak Hour Tota | al 279 | | | PM Peak Hour Factor | 86.67 % | PM Peak Hour Factor | 82.33 % | | PM Peak Hour Factor | 85.42 % | | PM Peak Hour Fac | tor 94.26 % | Site Name WB AVILA BEACH BETWEEN SAN MIGUEL ST AND SAN LUIS ST Jurisdiction Study Type Volume (2-way) Location Code 9891 West Direction Date 8/26/2006 Real Time 17:40 Start Date 8/26/2006 Start Time 18:00 00:15 Sample Time Operator Number 29 Machine Number 1012 Saturday, August 26, 2006 | | | 8/2 | 6/2006 | | | | 8/2 | 7/2006 | | | | | 8/28 | 3/2006 | | | | | 8/2 | 9/2006 | | | |-------|---------|----------|--------|-------------|-------|---------|----------|----------|-----------|-------------------|------|---------|---------|--------|----------|--------|-------|-----------|--------|--------|---------|---------| | HR | HR | | | | HR | HR | | | | - HI | ₹ | IR. | | | | | HR | HR | | | | | | Begin | Total | 00-15 | 15-30 | 30-45 45-00 | Begin | Total | 00-15 | 15-30 30 |)-45 45-0 |) Beg | ginT | otal 0 | 0-15 | 15-30 | 30-45 45 | -00 | Begin | Total | 00-15 | 15-30 | 30-45 4 | 5-00 | | 00 | | | | | 00 | 2 | 2 | 0 | 0 | 00 |) | 8 | 2 | 2 | 3 | 1 | 00 | 4 | 0 | 0 | 2 | 2 | | 01 | | | | | 01 | 7 | 1 | 2 | 4 | 0 | I | 6 | 1
 1 | 2 | 2 | 01 | 4 | 0 | 1 | 1 | 2 | | 02 | | | | | 02 | 2 | 1 | 0 | 1 | 02 | 2 | 3 | 0 | 2 | 0 | 1 | 02 | 2 | 0 | 1 | 0 | 1 | | 03 | | | | | 03 | 11 | 1 | 1 | 4 | <mark>5</mark> 03 | 3 | 23 | 2 | 0 | 4 | 17 | 03 | 25 | 4 | 4 | 6 | 11 | | 04 | | | | | 04 | 65 | 7 | 4 | 12 4 | <mark>2</mark> 04 | 1 | 218 | 14 | 21 | 60 | 123 | 04 | 210 | 16 | 22 | 56 | 116 | | 05 | | | | | 05 | 235 | 66 | 52 | 50 6 | | 5 | 520 | 157 | 152 | 109 | 102 | 05 | 581 | 165 | 171 | 119 | 126 | | 06 | | | | | 06 | 222 | 67 | 61 | 42 5 | | 6 | 333 | 121 | 65 | 75 | 72 | 06 | 308 | 92 | 78 | 66 | 72 | | 07 | | | | | 07 | 156 | 51 | 40 | 33 3 | | | 156 | 47 | 52 | 25 | 32 | 07 | 162 | 35 | 56 | 37 | 34 | | 80 | | | | | 08 | 123 | 35 | 29 | 20 3 | | 3 | 143 | 31 | 46 | 30 | 36 | 80 | 154 | 36 | 50 | 34 | 34 | | 09 | | | | | 09 | 163 | 36 | 47 | 46 3 | | 9 | 152 | 38 | 44 | 25 | 45 | 09 | 165 | 39 | 44 | 37 | 45 | | 10 | | | | | 10 | 184 | 40 | 35 | 50 5 | |) | 163 | 38 | 45 | 38 | 42 | 10 | 201 | 45 | 53 | 48 | 55 | | 11 | | | | | 11 | 199 | 49 | 50 | 47 5 | | ı | 243 | 68 | 58 | 50 | 67 | 11 | 223 | 50 | 58 | 64 | 51 | | 12 | | | | | 12 | 247 | 67 | 54 | 47 7 | | 2 | 206 | 58 | 49 | 52 | 47 | 12 | 245 | 52 | 61 | 63 | 69 | | 13 | | | | | 13 | 243 | 70 | 55 | 49 6 | | 3 | 180 | 52 | 45 | 37 | 46 | 13 | 224 | 54 | 71 | 53 | 46 | | 14 | | | | | 14 | 222 | 63 | 48 | 53 5 | | 1 | 211 | 55 | 45 | 60 | 51 | 14 | 220 | 50 | 47 | 59 | 64 | | 15 | | | | | 15 | 197 | 55 | 56 | 31 5 | 5 15 | 5 | 176 | 38 | 46 | 42 | 50 | 15 | 194 | 55 | 58 | 43 | 38 | | 16 | | | | | 16 | 173 | 51 | 45 | 33 4 | 1 16 | 3 | 138 | 35 | 36 | 33 | 34 | 16 | 169 | 44 | 47 | 40 | 38 | | 17 | | | | | 17 | 155 | 33 | 41 | 38 4 | 17 | 7 | 146 | 47 | 37 | 31 | 31 | 17 | 149 | 46 | 38 | 34 | 31 | | 18 | 196 | 46 | 48 | | 18 | 130 | 36 | 34 | 26 3 | 1 18 | 3 | 103 | 33 | 33 | 20 | 17 | 18 | 135 | 32 | 44 | 26 | 33 | | 19 | 99 | 31 | 18 | | 19 | 71 | 22 | 17 | 17 1 | 5 19 |) | 73 | 22 | 18 | 19 | 14 | 19 | 87 | 28 | 22 | 23 | 14 | | 20 | 87 | 31 | 25 | 17 14 | 20 | 50 | 18 | 11 | 11 1 | 20 |) | 38 | 9 | 9 | 3 | 17 | 20 | 51 | 15 | 16 | 7 | 13 | | 21 | 85 | 46 | 13 | 12 14 | 21 | 54 | 20 | 14 | 12 | 3 2° | 1 | 54 | 16 | 21 | 11 | 6 | 21 | 63 | 21 | 22 | 8 | 12 | | 22 | 33 | | 5 | | 22 | 29 | 5 | 6 | 9 | 22 | 2 | 17 | 6 | 2 | 4 | 5 | 22 | 23 | 8 | 4 | 3 | 8 | | 23 | 8 | 2 | 4 | 1 1 | 23 | 8 | 2 | 5 | 0 | 1 23 | 3 | 7 | 2 | 1 | 3 | 1 | 23 | 18 | 7 | 6 | 2 | 3 | | | 508 | Total | | | | 2948 | Total | | | | | 3317 To | otal | | | | | 3617 | otal | AM Peak | Hour Sta | art | | | AM Peak | Hour Sta | art | 05:3 |) | AM | Peak Ho | ur Sta | ırt | 0- | :45 | | AM Peak H | our St | art | (| 05:00 | | | AM Peak | Hour To | tal | | | AM Peak | Hour To | tal | 24 | 5 | AM | Peak Ho | ur Tota | al | | 541 | | AM Peak H | our To | tal | | 581 | | | AM Peak | Hour Fa | ctor | | | AM Peak | Hour Fa | ctor | 91.4 | 2 % | AM | Peak Ho | our Fac | ctor | 8 | 5.15 % | | AM Peak H | our Fa | ctor | 8 | 84.94 % | | | PM Peak | Hour Sta | art | 18:00 | | PM Peak | Hour St | art | 12:4 | 5 | PM | Peak Ho | ur Sta | ırt | 1- | :00 | | PM Peak F | our St | art | 4 | 12:30 | | | PM Peak | Hour To | tal | 196 | | PM Peak | Hour To | tal | 25 | 3 | PM | Peak Ho | ur Tota | al | | 211 | | PM Peak H | our To | tal | | 257 | | | PM Peak | Hour Fa | ctor | 92.45 | % | PM Peak | Hour Fa | ctor | 80.0 | 6 % | PM | Peak Ho | ur Fac | ctor | 8 | .92 % | | PM Peak H | our Fa | ctor | 9 | 90.49 % | Site Name WB AVILA BEACH BETWEEN SAN MIGUEL ST AND SAN LUIS ST Jurisdiction Study Type Volume (2-way) Location Code 9891 West Direction Date 8/26/2006 Real Time 17:40 Start Date 8/26/2006 Start Time 18:00 00:15 Sample Time Operator Number 29 Machine Number 1012 Wednesday, August 30, 2006 | | 8/30/2006 | | 8/31/200 | 6 | | 9/1/2006 | | 9/2/2006 | | |-------|-------------------------------|-------|---------------------|-------------|-------|------------------------------|---------|--------------------------|-------------| | HR | HR | HR | HR | | HR | HR | HR | HR | <u></u> | | Begin | Total 00-15 15-30 30-45 45-00 | Begin | Total 00-15 15-30 | 30-45 45-00 | Begin | Total 00-15 15-30 30-45 45-0 | 0 Begin | Total 00-15 15-30 | 30-45 45-00 | | 00 | 8 1 2 1 4 | 00 | 8 1 : | 3 2 2 | 00 | 10 6 1 2 | 1 00 | 10 1 5 | 3 1 | | 01 | 9 3 2 2 2 | 01 | 12 4 | 1 2 2 | 01 | 7 4 0 1 | 2 01 | 14 2 6 | 3 3 | | 02 | 6 1 1 1 3 | 02 | 8 3 | 1 1 3 | 02 | 8 1 0 3 | 4 02 | 4 1 0 | 1 2 | | 03 | 32 3 7 5 17 | 03 | 24 6 | 1 4 13 | 03 | 11 2 3 3 | 3 03 | 17 5 2 | 3 7 | | 04 | 229 11 29 71 118 | 04 | 189 9 24 | 48 108 | 04 | | 04 | 35 5 12 | 6 12 | | 05 | 548 148 174 119 107 | 05 | 478 130 150 | | 05 | | 3 05 | 112 35 35 | 15 27 | | 06 | 317 104 86 70 57 | 06 | 283 94 68 | | 06 | | 9 06 | 108 23 38 | 26 21 | | 07 | 177 63 50 28 36 | 07 | 191 69 30 | | 07 | | 1 07 | 173 <u>53</u> 44 | 43 33 | | 80 | 134 32 42 35 25 | 08 | 153 32 4 | | 08 | | 08 | 190 47 52 | 37 54 | | 09 | 141 39 41 31 30 | 09 | 176 44 50 | 40 42 | 09 | | 5 09 | 322 74 91 | 84 73 | | 10 | 187 48 54 31 54 | 10 | 209 47 50 | 58 48 | 10 | 289 85 73 68 6 | 3 10 | 427 <u>82</u> <u>116</u> | 101 128 | | 11 | 227 65 50 49 63 | 11 | 222 50 5 | | 11 | 401 95 89 117 10 | 0 11 | 614 123 164 | 159 168 | | 12 | 267 57 72 61 77 | 12 | 257 55 70 | | 12 | 469 120 130 115 10 | 12 | 627 152 164 | 154 157 | | 13 | 236 66 66 49 55 | 13 | 216 55 6 | 1 46 54 | 13 | 441 118 119 105 9 | 9 13 | 800 160 191 | 214 235 | | 14 | 233 51 49 69 64 | 14 | 285 78 68 | | 14 | 396 79 127 105 8 | 5 14 | 940 258 265 | 229 188 | | 15 | 162 55 45 29 33 | 15 | 320 81 8 | 75 79 | 15 | 369 96 90 102 8 | 1 15 | 578 176 147 | 127 128 | | 16 | 188 42 38 43 65 | 16 | 349 77 9 | 83 99 | 16 | | 2 16 | 349 109 87 | 73 80 | | 17 | 139 31 44 30 34 | 17 | 432 118 11: | 2 113 89 | 17 | | 2 17 | 337 77 93 | 89 78 | | 18 | 129 25 42 25 37 | 18 | 244 94 6 | 1 40 49 | 18 | | 9 18 | 244 62 60 | 64 58 | | 19 | 106 30 32 21 23 | 19 | 126 48 3 | 3 22 23 | 19 | | 3 19 | 139 55 32 | 30 22 | | 20 | 72 13 24 17 18 | 20 | 87 28 2 | 1 18 20 | 20 | 119 31 32 25 3 | 1 20 | 97 24 15 | 28 30 | | 21 | 59 26 13 9 11 | 21 | 96 23 38 | 3 19 16 | 21 | 91 27 27 23 1 | 4 21 | 76 31 14 | 20 11 | | 22 | 29 8 9 2 10 | 22 | 43 13 13 | 9 8 | 22 | 58 12 13 24 | 9 22 | 52 19 15 | 7 11 | | 23 | 14 3 2 2 7 | 23 | 30 9 1 | 5 5 | 23 | 40 10 10 11 | 9 23 | 29 7 8 | 11 3 | | | 3649 Total | | 4438 Total | | | 4478 Total | | 6294 Total | _ | AM Peak Hour Start 04:45 | | AM Peak Hour Start | 04:45 | | AM Peak Hour Start 11:0 | 0 | AM Peak Hour Start | 11:00 | | | AM Peak Hour Total 559 | | AM Peak Hour Total | 496 | | AM Peak Hour Total 40 | 1 | AM Peak Hour Total | 614 | | | AM Peak Hour Factor 80.32 | % | AM Peak Hour Factor | 79.49 9 | % | AM Peak Hour Factor 85.6 | 8 % | AM Peak Hour Factor | 91.37 % | | | PM Peak Hour Start 12:15 | | PM Peak Hour Start | 16:45 | | PM Peak Hour Start 12:0 | 0 | PM Peak Hour Start | 13:45 | | | PM Peak Hour Total 276 | | PM Peak Hour Total | 442 | | PM Peak Hour Total 46 | 9 | PM Peak Hour Total | 987 | | | PM Peak Hour Factor 89.61 | % | PM Peak Hour Factor | 93.64 9 | % | PM Peak Hour Factor 90.1 | 9 % | PM Peak Hour Factor | 93.11 % | Site Name WB AVILA BEACH BETWEEN SAN MIGUEL ST AND SAN LUIS ST Jurisdiction Study Type Volume (2-way) Location Code 9891 West Direction Date 8/26/2006 Real Time 17:40 Start Date 8/26/2006 Start Time 18:00 00:15 Sample Time Operator Number 29 Machine Number 1012 Sunday, September 03, 2006 | | | 9/ | 3/2006 | | | |-------|-------|-------|--------|-------|-------| | HR | HR | | | | | | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | | 00 | 7 | 2 | 3 | 2 | 0 | | 01 | 10 | 1 | 2 | 5 | 2 | | 02 | 5 | 0 | 1 | 3 | 1 | | 03 | 8 | 3 | 0 | 1 | 4 | | 04 | 56 | 6 | 1 | 16 | 33 | | 05 | 173 | 37 | 59 | 38 | 39 | | 06 | 132 | 37 | 35 | 30 | 30 | | 07 | 134 | 49 | 28 | 30 | 27 | | 80 | 187 | 35 | 43 | 53 | 56 | | 09 | 225 | 46 | 59 | 44 | 76 | | 10 | 343 | 82 | 89 | 78 | 94 | | 11 | 472 | 105 | 140 | 103 | 124 | | 12 | 467 | 105 | 135 | 120 | 107 | | 13 | 478 | 138 | 114 | 106 | 120 | | 14 | 397 | 92 | 102 | 87 | 116 | | 15 | 289 | 75 | 83 | 77 | 54 | | 16 | 242 | 72 | 42 | 54 | 74 | | 17 | 180 | 41 | 53 | 40 | 46 | | 18 | 142 | 37 | 46 | 32 | 27 | | 19 | 70 | 18 | 14 | 15 | 23 | | 20 | 44 | 8 | 5 | 15 | 16 | | 21 | 64 | 23 | 22 | 15 | 4 | | 22 | 27 | 9 | 8 | 4 | 6 | | 23 | 6 | 1 | 3 | 1 | 1 | | | 4158 | Total | | | | | | | • | | | | | | | 9/4 | 4/2006 | | | |-------|-------|-------|--------|-------|----------| | HR | HR | | | | <u>-</u> | | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | | 00 | 4 | 1 | 1 | 1 | 1 | | 01 | 2 | 1 | 1 | 0 | 0 | | 02 | 5 | 0 | 0 | 1 | 4 | | 03 | 24 | 3 | 4 | 2 | 15 | | 04 | 243 | 19 | 24 | 65 | 135 | | 05 | 544 | 156 | 156 | 108 | 124 | | 06 | 285 | 84 | 73 | 57 | 71 | | 07 | 165 | 53 | 58 | 32 | 22 | | 80 | 123 | 33 | 33 | 31 | 26 | | 09 | 142 | 39 | 29 | 34 | 40 | | 10 | 137 | 35 | 34 | 24 | 44 | | 11 | 171 | 27 | 43 | 49 | 52 | | 12 | | | | | | | 13 | | | | | | | 14 | | | | | | | 15 | | | | | | | 16 | | | | | | | 17 | | | | | | | 18 | | | | | | | 19 | | | | | | | 20 | | | | | | | 21 | | | | | | | 22 | | | | | | | 23 | | | | | | | | 1845 | Total | | | | | | | | | | | | AM Peak Hour Start | 11:00 | |---------------------|---------| | AM Peak Hour Total | 472 | | AM Peak Hour Factor | 84.29 % | | PM Peak Hour Start | 12:15 | | PM Peak Hour Total | 500 | | PM Peak Hour Factor | 90.58 % | | | | | AM Peak Hour Start | 04:45 | |---------------------|---------| | AM Peak Hour Total | 555 | | AM Peak Hour Factor | 88.94 % | | PM Peak Hour Start | | | PM Peak Hour Total | | PM Peak Hour Factor Site Name CAVE LANDING RD 2-directional volume Jurisdiction Study Type Volume (ch1) Location Code 9874 Direction None Date 8/16/2006 Real Time 12:30 Start Date 8/16/2006 Start Time 13:00 Sample Time 00:15 Operator Number 29 Machine Number 1012 Wednesday, August
16, 2006 | | | 08-16 | -06 (Cl | ո1) | | |-------|-------|-------|---------|-------|-------| | HR | HR | | | | | | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | | 00 | | | | | | | 01 | | | | | | | 02 | | | | | | | 03 | | | | | | | 04 | | | | | | | 05 | | | | | | | 06 | | | | | | | 07 | | | | | | | 80 | | | | | | | 09 | | | | | | | 10 | | | | | | | 11 | | | | | | | 12 | | | | | | | 13 | 80 | 15 | 22 | 25 | 18 | | 14 | 110 | 27 | 26 | 32 | 25 | | 15 | 88 | 25 | 27 | 18 | 18 | | 16 | 94 | 27 | 24 | 28 | 15 | | 17 | 65 | 14 | 22 | 12 | 17 | | 18 | 83 | 20 | 19 | 18 | 26 | | 19 | 77 | 20 | 19 | 16 | 22 | | 20 | 46 | 7 | 20 | 15 | 4 | | 21 | 22 | 6 | 6 | 7 | 3 | | 22 | 20 | 12 | 4 | 1 | 3 | | 23 | 27 | 7 | 9 | 2 | 9 | | | 712 | Total | | | | | 7 12 10tai | | |---------------------|---------| | | | | AM Peak Hour Start | | | AM Peak Hour Total | | | AM Peak Hour Factor | | | PM Peak Hour Start | 14:00 | | PM Peak Hour Total | 110 | | PM Peak Hour Factor | 85.94 % | | | | | | | 08-17 | -06 (Cł | ո1) | | |-------|-------|-------|---------|-------|-------| | HR | HR | | | | | | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | | 00 | 6 | 3 | 0 | 2 | 1 | | 01 | 15 | 3 | 5 | 3 | 4 | | 02 | 1 | 0 | 1 | 0 | 0 | | 03 | 1 | 1 | 0 | 0 | 0 | | 04 | 0 | 0 | 0 | 0 | 0 | | 05 | 2 | 0 | 0 | 2 | 0 | | 06 | 3 | 0 | 0 | 0 | 3 | | 07 | 9 | 2 | 6 | 1 | 0 | | 80 | 20 | 8 | 4 | 5 | 3 | | 09 | 31 | 6 | 2 | 11 | 12 | | 10 | 34 | 12 | 8 | 5 | 9 | | 11 | 49 | 12 | 13 | 9 | 15 | | 12 | 63 | 12 | 17 | 20 | 14 | | 13 | 91 | 23 | 28 | 16 | 24 | | 14 | 130 | 28 | 33 | 29 | 40 | | 15 | 119 | 28 | 30 | 29 | 32 | | 16 | 83 | 29 | 15 | 20 | 19 | | 17 | 78 | 23 | 19 | 21 | 15 | | 18 | 69 | 15 | 29 | 10 | 15 | | 19 | 45 | 12 | 10 | 12 | 11 | | 20 | 20 | 9 | 8 | 0 | 3 | | 21 | 20 | 4 | 4 | 6 | 6 | | 22 | 10 | 4 | 3 | 0 | 3 | | 23 | 4 | 0 | 1 | 2 | 1 | | | 903 | Total | | | | | AM Peak Hour Start | 11:00 | |---------------------|---------| | AM Peak Hour Total | 49 | | AM Peak Hour Factor | 81.67 % | | PM Peak Hour Start | 14:00 | | PM Peak Hour Total | 130 | | PM Peak Hour Factor | 81.25 % | | | | | | | 08-18 | -06 (Cł | ո1) | | |-------|-------|-------|---------|-------|-------| | HR | HR | | | | | | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | | 00 | 11 | 2 | 3 | 1 | 5 | | 01 | 10 | 2 | 3 | 3 | 2 | | 02 | 2 | 1 | 0 | 0 | 1 | | 03 | 2 | 1 | 0 | 0 | 1 | | 04 | 1 | 0 | 0 | 0 | 1 | | 05 | 2 | 0 | 0 | 0 | 2 | | 06 | 2 | 0 | 0 | 2 | 0 | | 07 | 10 | 2 | 1 | 3 | 4 | | 08 | 16 | 4 | 3 | 7 | 2 | | 09 | 21 | 6 | 8 | 3 | 4 | | 10 | 25 | 5 | 4 | 6 | 10 | | 11 | 38 | 5 | 14 | 13 | 6 | | 12 | 58 | 14 | 14 | 13 | 17 | | 13 | 50 | 11 | 16 | 6 | 17 | | 14 | 66 | 11 | 19 | 19 | 17 | | 15 | 62 | 17 | 20 | 16 | 9 | | 16 | 60 | 21 | 9 | 18 | 12 | | 17 | 31 | 6 | 10 | 10 | 5 | | 18 | 28 | 7 | 8 | 5 | 8 | | 19 | 20 | 8 | 6 | 4 | 2 | | 20 | 20 | 8 | 3 | 4 | 5 | | 21 | 9 | 2 | 3 | 1 | 3 | | 22 | 4 | 0 | 3 | 1 | 0 | | 23 | 3 | 0 | 2 | 1 | 0 | | | 551 | Total | | | | | | | | | | | | AM Peak Hour Start | 10:45 | |---------------------|---------| | AM Peak Hour Total | 42 | | AM Peak Hour Factor | 75.00 % | | PM Peak Hour Start | 14:30 | | PM Peak Hour Total | 73 | | PM Peak Hour Factor | 91.25 % | | | | | | | 08-19 | -06 (Cł | ո1) | | |-------|-------|-------|---------|-------|-------| | HR | HR | | | | | | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | | 00 | 2 | 0 | 2 | 0 | 0 | | 01 | 6 | 3 | 0 | 1 | 2 | | 02 | 2 | 0 | 0 | 0 | 2 | | 03 | 1 | 0 | 0 | 0 | 1 | | 04 | 1 | 1 | 0 | 0 | 0 | | 05 | 0 | 0 | 0 | 0 | 0 | | 06 | 3 | 2 | 1 | 0 | 0 | | 07 | 2 | 0 | 2 | 0 | 0 | | 80 | 14 | 3 | 5 | 3 | 3 | | 09 | 18 | 5 | 5 | 4 | 4 | | 10 | 23 | 6 | 5 | 6 | 6 | | 11 | 50 | 13 | 13 | 9 | 15 | | 12 | 49 | 9 | 12 | 13 | 15 | | 13 | 55 | 10 | 19 | 17 | 9 | | 14 | 85 | 19 | 27 | 21 | 18 | | 15 | 49 | 10 | 6 | 15 | 18 | | 16 | 60 | 21 | 14 | 10 | 15 | | 17 | 47 | 8 | 15 | 16 | 8 | | 18 | 61 | 21 | 16 | 17 | 7 | | 19 | 60 | 13 | 15 | 10 | 22 | | 20 | 18 | 4 | 2 | 9 | 3 | | 21 | 9 | 3 | 1 | 3 | 2 | | 22 | 13 | 2 | 4 | 4 | 3 | | 23 | 8 | 2 | 1 | 0 | 5 | | | 636 | Total | | | | | | | | | | | AM Peak Hour Start AM Peak Hour Total PM Peak Hour Start PM Peak Hour Total PM Peak Hour Factor AM Peak Hour Factor 11:00 14:00 50 83.33 % 85 78.70 % Site Name CAVE LANDING RD Jurisdiction Study Type Volume (ch1) Location Code 9874 Direction None Date 8/16/2006 Real Time 12:30 Start Date 8/16/2006 Start Time 13:00 00:15 Sample Time Operator Number 29 Machine Number 1012 Sunday, August 20, 2006 | | 08-20-06 (Ch1) |) | | 08-21-06 (Ch ² | 1) | | 08-22-06 (Ch1 |) | | 08-2 | 3-06 (Ch | 1) | | |-------|---------------------|------------|-------|---------------------------|-------------|-------|---------------------|-------------|-------|----------------|----------|---------|-------------------| | HR | HR | | HR | HR | <u></u> | HR | HR | <u>.</u> | HR | HR | | | | | Begin | Total 00-15 15-30 3 | 0-45 45-00 | Begin | Total 00-15 15-30 | 30-45 45-00 | Begin | Total 00-15 15-30 3 | 30-45 45-00 | Begin | Total 00-1 | 5 15-30 | 30-45 4 | 1 5-00 | | 00 | 7 3 2 | 1 1 | 00 | 13 3 7 | 1 2 | 00 | 11 4 3 | 1 3 | 00 | 19 | 6 4 | 4 | 5 | | 01 | 7 1 3 | 1 2 | 01 | 6 2 1 | 0 3 | 01 | 5 3 1 | 0 1 | 01 | 6 | 3 0 | 2 | 1 | | 02 | 0 0 0 | 0 0 | 02 | 4 2 0 | 2 0 | 02 | 0 0 0 | 0 0 | 02 | 4 | 0 2 | 1 | 1 | | 03 | 1 0 0 | 1 0 | 03 | 0 0 0 | 0 0 | 03 | 4 1 0 | 0 3 | 03 | 6 | 3 | 3 | 0 | | 04 | 2 0 0 | 2 0 | 04 | 1 0 1 | 0 0 | 04 | 6 0 2 | 0 4 | 04 | 3 | 0 2 | 1 | 0 | | 05 | 0 0 0 | 0 0 | 05 | 5 1 2 | 1 1 | 05 | 5 1 2 | 1 1 | 05 | 4 | 2 0 | 0 | 2 | | 06 | 7 4 0 | 2 1 | 06 | 7 2 3 | 2 0 | 06 | 6 2 0 | 1 3 | 06 | 6 | 1 1 | 2 | 2 | | 07 | 11 4 2 | 2 3 | 07 | 5 1 0 | 3 1 | 07 | 12 0 5 | 5 2 | 07 | 21 | 5 4 | 6 | 6 | | 08 | 3 3 0 | 0 0 | 08 | 7 3 2 | 2 0 | 80 | 8 2 1 | 1 4 | 80 | 10 | 4 4 | 0 | 2 | | 09 | 8 1 1 | 0 6 | 09 | 10 2 2 | 1 5 | 09 | 20 5 3 | 11 1 | 09 | 23 | 0 6 | 11 | 6 | | 10 | 25 1 4 | 13 7 | 10 | 27 7 6 | 6 8 | 10 | 30 10 5 | 8 7 | 10 | 26 | 5 12 | 3 | 6 | | 11 | 30 4 8 | 11 7 | 11 | 27 3 12 | 9 3 | 11 | 38 11 5 | 14 8 | 11 | 47 | 5 7 | 19 | 16 | | 12 | 42 17 6 | 12 7 | 12 | 43 16 11 | 9 7 | 12 | 75 25 15 | 13 22 | 12 | 80 1 | | 19 | 22 | | 13 | 68 18 11 | 18 21 | 13 | 52 11 13 | 14 14 | 13 | 60 12 17 | 12 19 | 13 | 100 3 | | 19 | 35 | | 14 | 74 20 26 | 15 13 | 14 | 67 17 17 | 19 14 | 14 | 58 4 14 | 24 16 | 14 | 59 3 | 3 26 | | | | 15 | 56 19 16 | 13 8 | 15 | 51 13 11 | 16 11 | 15 | 70 13 24 | 17 16 | 15 | | | | | | 16 | 46 16 11 | 9 10 | 16 | 56 16 16 | 15 9 | 16 | 74 24 16 | 14 20 | 16 | | | | | | 17 | 34 4 7 | 8 15 | 17 | 42 14 7 | 9 12 | 17 | 43 9 7 | 9 18 | 17 | | | | | | 18 | 43 13 17 | 9 4 | 18 | 38 10 7 | 7 14 | 18 | 43 12 11 | 9 11 | 18 | | | | | | 19 | 29 7 6 | 8 8 | 19 | 30 11 3 | 9 7 | 19 | 40 11 11 | 13 5 | 19 | | | | | | 20 | 21 8 4 | 5 4 | 20 | 27 10 13 | 2 2 | 20 | 24 7 6 | 5 6 | 20 | | | | | | 21 | 15 3 3 | 3 6 | 21 | 16 5 3 | 3 5 | 21 | 13 2 5 | 2 4 | 21 | | | | | | 22 | 5 2 0 | 0 3 | 22 | 15 8 1 | 3 3 | 22 | 31 7 5 | 10 9 | 22 | | | | | | 23 | 12 3 2 | 6 1 | 23 | 11 1 4 | 6 0 | 23 | 12 2 2 | 2 6 | 23 | | | | | | | 546 Total | | | 560 Total | | | 688 Total | | | 414 Total | AM Peak Hour Start | 10:30 | | AM Peak Hour Start | 10:45 | | AM Peak Hour Start | 11:00 | | AM Peak Hour S | Start | , | 11:00 | | | AM Peak Hour Total | 32 | | AM Peak Hour Total | 32 | | AM Peak Hour Total | 38 | | AM Peak Hour 7 | otal | | 47 | | | AM Peak Hour Factor | 61.54 % | | AM Peak Hour Factor | 66.67 % | | AM Peak Hour Factor | 67.86 % | | AM Peak Hour F | actor | F | 61.84 % | | | PM Peak Hour Start | 13:30 | | PM Peak Hour Start | 13:45 | | PM Peak Hour Start | 15:15 | | PM Peak Hour S | Start | , | 13:30 | | | PM Peak Hour Total | 85 | | PM Peak Hour Total | 67 | | PM Peak Hour Total | 81 | | PM Peak Hour 1 | otal | | 113 | | | PM Peak Hour Factor | 81.73 % | | PM Peak Hour Factor | 88.16 % | | PM Peak Hour Factor | 84.38 % | | PM Peak Hour F | actor | 8 | 80.71 % | Site Name EB FRONT ST Jurisdiction Study Type Volume (ch1) Location Code 9860 Direction East Date 8/11/2006 Real Time 11:56 Start Date 8/11/2006 Start Time 12:00 Sample Time 00:15 Operator Number 57 Machine Number 33 Friday, August 11, 2006 | | | 08-11- | -06 (Cl | ո1) | | | 0 | 8-12-06 (| Ch1) | | | | 08-13-06 (C | ch1) | | | 08-14-06 (Ch | 1) | | |-------|---------|----------|---------|-------|-------|-------|------------|-----------|---------|---------|-------|-----------|-------------|-------------|-------|------------|--------------|-------|---------| | HR | HR | | | | | HR | HR | | | | HR | HR | | | HR | HR | | | | | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | Begin | Total 00 |)-15 15-3 | 0 30-45 | 45-00 | Begin | Total | 00-15 15-30 | 30-45 45-00 | Begin | Total 0 | 0-15 15-30 | 30-45 | 45-00 | | 00 | | | | | | 00 | 3 | 1 | 0 1 | 1 | 00 | 0 | 0 0 | 0 0 | 00 | 0 | 0 0 | 0 | 0 | | 01 | | | | | | 01 | 1 | 0 | 0 1 | 0 | 01 | 1 | 0 0 | 0 1 | 01 | 2 | 1 0 | 1 | 0 | | 02 | | | | | | 02 | 1 | 0 | 1 0 | 0 | 02 | 0 | 0 0 | 0 0 | 02 | 0 | 0 0 | 0 | 0 | | 03 | | | | | | 03 | 0 | 0 | 0 0 | 0 | 03 | 0 | 0 0 | 0 0 | 03 | 0 | 0 0 | 0 | 0 | | 04 | | | | | | 04 | 0 | 0 | 0 0 | 0 | 04 | 0 | 0 0 | 0 0 | 04 | 0 | 0 0 | 0 | 0 | | 05 | | | | | | 05 | 2 | 0 | 0 1 | 1 | 05 | 4 | 0 1 | 2 1 | 05 | 4 | 0 0 | 3 | 1 | | 06 | | | | | | 06 | 1 | 1 | 0 0 | 0 | 06 | 2 | 0 1 | 0 1 | 06 | 6 | 4 0 | 2 | 0 | | 07 | | | | | | 07 | 7 | 2 | 3 1 | 1 | 07 | 9 | 2 0 | 2 5 | 07 | 19 | 4 5 | 6 | 4 | | 80 | | | | | | 08 | 11 | 2 | 1 6 | | 08 | 11 | 3 1 | 2 5 | 08 | 8 | 2 0 | 3 | 3 | | 09 | | | | | | 09 | 8 | 4 | 0 3 | | 09 | 13 | 2 2 | | 09 | 16 | 2 4 | 5 | 5 | | 10 | | | | | | 10 | 34 | 7 1 | 0 9 | 8 | 10 | 25 | 3 3 | 9 10 | 10 | 29 | 9 7 | 4 | 9 | | 11 | | | | | | 11 | 61 | 9 1 | 2 13 | 27 | 11 | 64 | 12 20 | | 11 | 43 | 9 15 | 6 | 13 | | 12 | 94 | 27 | 20 | 24 | | 12 | 94 | 18 2 | 26 24 | 26 | 12 | 77 | 18 16 | | 12 | 74 | 19 14 | 20 | 21 | | 13 | 104 | 25 | 31 | 25 | | 13 | 105 | | 22 27 | | 13 | 101 | 13 25 | |
13 | 87 | 23 18 | 23 | 23 | | 14 | 99 | 30 | 23 | 22 | 24 | 14 | 117 | 27 2 | 29 24 | | 14 | 101 | 22 32 | | 14 | 70 | 17 27 | 10 | 16 | | 15 | 76 | 24 | 20 | 14 | 18 | 15 | 102 | | 26 30 | | 15 | 80 | 15 27 | | 15 | 45 | 14 15 | 8 | 8 | | 16 | 25 | | 5 | 8 | | 16 | 124 | | 35 | | 16 | 42 | 12 8 | | 16 | 56 | 13 17 | 12 | 14 | | 17 | 42 | | 8 | 9 | | 17 | 61 | | 2 17 | _ | 17 | 43 | 13 7 | | 17 | 51 | 8 21 | 11 | 11 | | 18 | 54 | 13 | 13 | 17 | 11 | 18 | 55 | | 8 15 | 14 | 18 | 37 | 9 11 | 10 7 | 18 | 28 | 1 9 | 11 | 7 | | 19 | 30 | 13 | 5 | 5 | 7 | 19 | 43 | - | 1 8 | 4 | 19 | 25 | 9 5 | | 19 | 24 | 10 2 | 4 | 8 | | 20 | 20 | 5 | 5 | 2 | 8 | 20 | 16 | - | 4 0 | 3 | 20 | 17 | 4 5 | | 20 | 17 | 5 1 | 3 | 8 | | 21 | 19 | 6 | 8 | 4 | 1 | 21 | 13 | - | 3 1 | 6 | 21 | 9 | 2 3 | 3 1 | 21 | 4 | 0 1 | 3 | 0 | | 22 | 6 | 1 | 1 | 3 | 1 | 22 | 3 | 0 | 0 2 | 1 | 22 | 3 | 3 0 | 0 0 | 22 | 6 | 1 2 | 1 | 2 | | 23 | 0 | 0 | 0 | 0 | 0 | 23 | 5 | | 2 1 | 0 | 23 | 1 | 0 0 | 1 0 | 23 | 1 | 0 0 | 0 | 1 | | | 569 | Total | | | | | 867 To | otal | | | | 665 | Γotal | | | 590 T | otal | AM Peak | Hour Sta | art | | | | AM Peak Ho | ur Start | | 11:00 | | AM Peak F | lour Start | 11:00 | | AM Peak Ho | our Start | | 11:00 | | | AM Peak | Hour To | tal | | | | AM Peak Ho | ur Total | | 61 | | AM Peak H | lour Total | 64 | | AM Peak Ho | our Total | | 43 | | | AM Peak | Hour Fa | ctor | | | | AM Peak Ho | ur Factor | | 56.48 % | • | AM Peak F | lour Factor | 80.00 % | | AM Peak Ho | our Factor | | 71.67 % | | | PM Peak | Hour Sta | art | | 13:15 | | PM Peak Ho | ur Start | | 15:45 | | PM Peak F | lour Start | 13:30 | | PM Peak Ho | our Start | | 13:30 | | | PM Peak | Hour To | tal | | 109 | | PM Peak Ho | ur Total | | 124 | | PM Peak F | lour Total | 117 | | PM Peak Ho | our Total | | 90 | | | PM Peak | Hour Fa | ctor | | 87.90 | % | PM Peak Ho | ur Factor | | 88.57 % | | PM Peak F | lour Factor | 86.03 % | | PM Peak Ho | our Factor | | 83.33 % | Site Name EB FRONT ST Jurisdiction Study Type Volume (ch1) Location Code 9860 East Direction Date 8/11/2006 Real Time 11:56 Start Date 8/11/2006 Start Time 12:00 Sample Time 00:15 Operator Number 57 Machine Number 33 Tuesday, August 15, 2006 | | 08-15-06 (C | Ch1) | | | 08-16-06 (Ch | 11) | | 08-17 | 7-06 (Ch1) | | | 08-18-0 | 06 (Ch1) |) | | |-------|---------------------|-------------|-------|-----------|--------------|-------------|-------|-----------------|-----------------|--------------------|-----------|----------|----------|----------|-------| | HR | HR | | HR | HR | | | HR | HR | | HR | HR | | | | _ | | Begin | Total 00-15 15-30 | 30-45 45-00 | Begin | Total (| 00-15 15-30 | 30-45 45-00 | Begin | Total 00-15 | 15-30 30-45 45- | 00 Begir | Total | 00-15 1 | 15-30 3 | 0-45 45- | .00 | | 00 | 1 0 1 | 0 0 | 00 | 0 | 0 0 | 0 0 | 00 | 1 1 | 0 0 | 00 | 0 | 0 | 0 | 0 | 0 | | 01 | 0 0 0 | 0 0 | 01 | 1 | 0 0 | 1 0 | 01 | 1 0 | 1 0 | 0 01 | 0 | 0 | 0 | 0 | 0 | | 02 | 1 0 0 | 0 1 | 02 | 1 | 0 0 | 0 1 | 02 | 0 0 | 0 0 | 0 02 | 0 | 0 | 0 | 0 | 0 | | 03 | 0 0 0 | 0 0 | 03 | 0 | 0 0 | 0 0 | 03 | 0 0 | 0 0 | 0 03 | 0 | 0 | 0 | 0 | 0 | | 04 | | 0 0 | 04 | 0 | 0 0 | 0 0 | 04 | 0 0 | 0 0 | 0 04 | 1 | 0 | 0 | 1 | 0 | | 05 | 3 1 0 | 1 1 | 05 | 1 | 0 1 | 0 0 | 05 | 1 0 | 1 0 | 0 05 | 3 | 0 | 0 | 0 | 3 | | 06 | | 0 0 | 06 | 3 | 0 0 | 1 2 | 06 | 10 0 | | 2 06 | 7 | 0 | 0 | 4 | 3 | | 07 | | 6 4 | 07 | 7 | 2 1 | 2 2 | 07 | 15 3 | | 4 07 | 19 | 2 | 6 | 6 | 5 | | 80 | | 5 5 9 | 08 | 15 | 1 5 | 4 5 | 08 | 17 3 | | 4 08 | 28 | 6 | 9 | 6 | 7 | | 09 | | 7 0 7 | 09 | 14 | 3 4 | 3 4 | 09 | 22 5 | | 4 09 | 40 | 9 | 11 | | 11 | | 10 | 69 10 15 | | 10 | 28 | 4 6 | 6 12 | 10 | 20 2 | 7 5 | <u>6</u> 10 | 41 | 6 | 15 | 9 | 11 | | 11 | | 3 10 23 | 11 | 47 | 6 11 | 11 19 | 11 | 45 10 | | <mark>18</mark> 11 | 64 | 15 | 14 | | 21 | | 12 | 94 21 29 | | 12 | 86 | 23 27 | 24 12 | 12 | 92 16 | | 23 12 | 104 | 27 | 28 | | 27 | | 13 | 86 22 16 | | 13 | 89 | 22 17 | 24 26 | 13 | 98 35 | | 17 13 | 84 | 19 | 31 | | 12 | | 14 | 95 21 31 | | 14 | 71 | 22 24 | 15 10 | 14 | 66 15 | | 22 14 | 69 | 14 | 22 | | 13 | | 15 | 61 13 10 | | 15 | 59 | 22 17 | 13 7 | 15 | 61 25 | | 7 15 | 54 | 12 | 17 | | 11 | | 16 | 45 15 9 | 6 15 | 16 | 39 | 8 10 | 15 6 | 16 | 34 8 | | 10 16 | 53 | 11 | 13 | 14 | 15 | | 17 | 45 10 11 | | 17 | 36 | 13 6 | 7 10 | 17 | 38 4 | | 12 17 | 36 | 11 | 7 | | 12 | | 18 | 35 11 11 | 8 5 | 18 | 40 | 15 15 | 5 5 | 18 | 42 6 | | 7 18 | 55 | 15 | 16 | 17 | 7 | | 19 | 31 9 6 | | 19 | 29 | 9 11 | 0 9 | 19 | 15 7 | | 3 19 | 35 | 11 | 11 | 6 | 7 | | 20 | 9 3 2 | 2 2 2 | 20 | 15 | 6 4 | 3 2 | 20 | 12 5 | 1 3 | 3 20 | 19 | 8 | 5 | 3 | 3 | | 21 | 9 3 4 | 1 2 0 | 21 | 5 | 2 2 | 1 0 | 21 | 6 2 | 2 2 | 0 21 | 9 | 3 | 1 | 3 | 2 | | 22 | 4 0 2 | 2 1 1 | 22 | 3 | 1 1 | 0 1 | 22 | 3 0 | 1 1 | 1 22 | 4 | 0 | 1 | 2 | 1 | | 23 | 1 0 1 | 0 0 | 23 | 2 | 0 0 | 1 1 | 23 | 3 1 | 0 2 | 0 23 | 7 | 2 | 0 | 2 | 3 | | | 704 Total | | | 591 T | Γotal | _ | | 602 Total | | | 732 | rotal | AM Peak Hour Start | 10:15 | | AM Peak H | lour Start | 11:00 | | AM Peak Hour St | tart 11 | 00 | AM Peak H | our Star | rt | 11: | :00 | | | AM Peak Hour Total | 77 | | AM Peak H | lour Total | 47 | | AM Peak Hour To | otal | 45 | AM Peak H | our Tota | al | | 64 | | | AM Peak Hour Factor | 83.70 % | | AM Peak H | lour Factor | 61.84 | % | AM Peak Hour Fa | actor 62 | 50 % | AM Peak H | our Fac | tor | 76. | .19 % | | | PM Peak Hour Start | 13:30 | | PM Peak H | lour Start | 13:30 | | PM Peak Hour St | tart 12 | 15 | PM Peak H | our Star | rt | 12: | :00 | | | PM Peak Hour Total | 100 | | PM Peak H | lour Total | 96 | | PM Peak Hour To | otal 1 | 11 | PM Peak H | our Tota | al | 1 | 104 | | | PM Peak Hour Factor | 80.65 % | | PM Peak H | lour Factor | 92.31 | % | PM Peak Hour Fa | actor 79 | 29 % | PM Peak H | our Fac | tor | 92. | .86 % | 6/22/07 @ 13:36:02 File Name: EB FRONT ST.xls Page 2 of 4 Site Name EB FRONT ST Jurisdiction Study Type Volume (ch1) Location Code 9860 Direction East Date 8/11/2006 Real Time 11:56 Start Date 8/11/2006 Start Time 12:00 Sample Time 00:15 Operator Number 57 33 Machine Number Saturday, August 19, 2006 | | 08-19-06 (Ch1) | | 08-20-06 (Ch | n1) | | 08-21-06 (Ch1) | | | 08-22-06 (Ch1) |) | |-------|-------------------------------|-------|---------------------|-------------|-------|----------------------|-----------|-------|---------------------|-------------| | HR | HR | HR | HR | | HR | HR | | HR | HR | | | Begin | Total 00-15 15-30 30-45 45-00 | Begin | Total 00-15 15-30 | 30-45 45-00 | Begin | Total 00-15 15-30 30 | -45 45-00 | Begin | Total 00-15 15-30 3 | 30-45 45-00 | | 00 | 4 0 0 4 0 | 00 | 0 0 0 | 0 0 | 00 | 1 0 1 | 0 0 | 00 | 0 0 0 | 0 0 | | 01 | 0 0 0 0 | 01 | 0 0 0 | 0 0 | 01 | 1 0 0 | 1 0 | 01 | 1 0 1 | 0 0 | | 02 | 0 0 0 0 | 02 | 1 1 0 | 0 0 | 02 | 2 1 0 | 0 1 | 02 | 0 0 0 | 0 0 | | 03 | 0 0 0 0 | 03 | 2 0 1 | 0 1 | 03 | 0 0 0 | 0 0 | 03 | 0 0 0 | 0 0 | | 04 | 0 0 0 0 | 04 | 1 1 0 | 0 0 | 04 | 0 0 0 | 0 0 | 04 | 0 0 0 | 0 0 | | 05 | 1 0 1 0 | 05 | 1 0 1 | 0 0 | 05 | 2 0 0 | 0 2 | 05 | 0 0 0 | 0 0 | | 06 | 1 0 0 0 1 | 06 | 1 0 0 | 1 0 | 06 | 7 2 2 | 1 2 | 06 | 6 1 1 | 3 1 | | 07 | 3 0 0 0 3 | 07 | 11 1 6 | 1 3 | 07 | 12 4 3 | 2 3 | 07 | 14 3 5 | 3 3 | | 80 | 22 3 2 6 11 | 08 | 11 5 2 | | 80 | 13 1 5 | 3 4 | 80 | 21 4 6 | 5 6 | | 09 | 20 3 8 5 | 09 | 30 5 8 | | 09 | 28 6 5 | 4 13 | 09 | 26 5 5 | 5 11 | | 10 | 52 12 7 11 22 | 10 | 37 3 12 | 10 12 | 10 | 37 9 8 | 8 12 | 10 | 27 0 8 | 12 7 | | 11 | 69 17 19 15 18 | 11 | 66 13 15 | 19 19 | 11 | 62 22 17 | 4 19 | 11 | 46 7 10 | 12 17 | | 12 | 90 20 24 27 19 | | 81 18 26 | 18 19 | 12 | 72 18 22 | 18 14 | 12 | 74 23 12 | 20 19 | | 13 | 107 28 18 28 33 | 13 | 92 24 20 | 26 22 | 13 | 89 25 27 | 21 16 | 13 | 63 17 21 | 16 9 | | 14 | 89 18 25 27 19 | 14 | 91 33 22 | 21 15 | 14 | 68 20 18 | 15 15 | 14 | 57 12 17 | 15 13 | | 15 | 85 16 20 25 24 | 15 | 71 21 22 | 12 16 | 15 | 52 12 16 | 13 11 | 15 | 41 12 11 | 13 5 | | 16 | 71 14 25 13 19 | 16 | 70 17 12 | 22 19 | 16 | 31 7 8 | 10 6 | 16 | 32 14 8 | 5 5 | | 17 | 57 13 15 18 11 | 17 | 32 7 11 | 5 9 | 17 | 24 6 8 | 4 6 | 17 | 41 15 8 | 10 8 | | 18 | 53 12 12 12 17 | 18 | 39 8 12 | | 18 | 46 11 9 | 13 13 | 18 | 30 10 7 | 7 6 | | 19 | 36 12 11 8 5 | 19 | 25 14 3 | | 19 | 31 14 8 | 4 5 | 19 | 12 4 4 | 3 1 | | 20 | 24 4 7 6 7 | 20 | 11 4 4 | | 20 | 16 5 2 | 9 0 | 20 | 3 1 0 | 1 1 | | 21 | 17 6 2 5 | 21 | 12 2 6 | 3 1 | 21 | 8 4 1 | 1 2 | 21 | 6 3 1 | 1 1 | | 22 | 5 0 3 1 1 | 22 | 3 1 0 | | 22 | 3 1 0 | 2 0 | 22 | 2 1 0 | 0 1 | | 23 | 9 2 1 4 2 | 23 | 2 1 0 | 1 0 | 23 | 2 0 1 | 0 1 | 23 | 1 0 1 | 0 0 | | | 815 Total | | 690 Total | | | 607 Total | | | 503 Total | AM Peak Hour Start 10:45 | | AM Peak Hour Start | 11:00 | | AM Peak Hour Start | 11:00 | | AM Peak Hour Start | 11:00 | | | AM Peak Hour Total 73 | | AM Peak Hour Total | 66 | | AM Peak Hour Total | 62 | | AM Peak Hour Total | 46 | | | AM Peak Hour Factor 82.95 | | AM Peak Hour Factor | 86.84 % | | AM Peak Hour Factor | 70.45 % | | AM Peak Hour Factor | 67.65 % | | | PM Peak Hour Start 13:00 | | PM Peak Hour Start | 13:30 | | PM Peak Hour Start | 13:00 | | PM Peak Hour Start | 12:30 | | | PM Peak Hour Total 107 | | PM Peak Hour Total | 103 | | PM Peak Hour Total | 89 | | PM Peak Hour Total | 77 | | | PM Peak Hour Factor 81.06 | % | PM Peak Hour Factor | 78.03 % | | PM Peak Hour Factor | 82.41 % | | PM Peak Hour Factor | 91.67 % | 6/22/07 @ 13:36:02 File Name: EB FRONT ST.xls Page 3 of 4 Site Name EB FRONT ST Jurisdiction Study Type Volume (ch1) Location Code 9860 East Direction Date 8/11/2006 Real Time 11:56 Start Date 8/11/2006 Start Time 12:00 00:15 Sample Time Operator Number 57 Machine Number 33 Wednesday, August 23, 2006 | | | 08-23 | -06 (Ch | n1) | | 08-24-06 (Ch1) | | | | | | | |-------|-----------|--------|---------|-------|-------------|----------------
---|-------|-------|-------|-------------|--| | HR | HR | | , | , | | HR | HR | | | | | | | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | | | 00 | 2 | 1 | 0 | 1 | 0 | 00 | 0 | 0 | 0 | 0 | 0 | | | 01 | 1 | 0 | 1 | 0 | 0 | 01 | 1 | 0 | 1 | 0 | 0 | | | 02 | 1 | 0 | 0 | 0 | 1 | 02 | 0 | 0 | 0 | 0 | 0 | | | 03 | 0 | 0 | 0 | 0 | 0 | 03 | 0 | 0 | 0 | 0 | 0 | | | 04 | 0 | 0 | 0 | 0 | 0 | 04 | 0 | 0 | 0 | 0 | 0 | | | 05 | 0 | 0 | 0 | 0 | 0 | 05 | 0 | 0 | 0 | 0 | 0 | | | 06 | 9 | 1 | 2 | 3 | 3 | 06 | 3 | 1 | 0 | 2 | 0 | | | 07 | 5 | 2 | 1 | 2 | 0 | 07 | 4 | 0 | 0 | 2 | 2 | | | 80 | 10 | 1 | 3 | 3 | 3 | 08 | 5 | 1 | 0 | 2 | 2 | | | 09 | 9 | 4 | 0 | 2 | 3 | 09 | 5 | 1 | 0 | 0 | 4 | | | 10 | 33 | 6 | 4 | 14 | 9 | 10 | 5 | 1 | 3 | 1 | 0 | | | 11 | 48 | 9 | 13 | 14 | 12 | 11 | 40 | 6 | 5 | 8 | 21 | | | 12 | 60 | 11 | 14 | 17 | 18 | 12 | 22 | 3 | 5 | 6 | 8 | | | 13 | 75 | 24 | 18 | 18 | 15 | 13 | 45 | 9 | 12 | 10 | 14 | | | 14 | 58 | 14 | 10 | 8 | 26 | 14 | 73 | 14 | 19 | 25 | 15 | | | 15 | 42 | 11 | 13 | 8 | 10 | 15 | 60 | 16 | 10 | 17 | 17 | | | 16 | 31 | 8 | 4 | 9 | 10 | 16 | | | | | | | | 17 | 25 | 7 | 5 | 8 | 5 | 17 | | | | | | | | 18 | 10 | 3 | 5 | 1 | 1 | 18 | | | | | | | | 19 | 4 | 2 | 0 | 0 | 2 | 19 | | | | | | | | 20 | 1 | 0 | 0 | 1 | 0 | 20 | | | | | | | | 21 | 0 | 0 | 0 | 0 | 0 | 21 | | | | | | | | 22 | 3 | 0 | 2 | 0 | 1 | 22 | | | | | | | | 23 | 0 | 0 | 0 | 0 | 0 | 23 | | | | | | | | | 427 | Total | | | | | 263 | Total | AM Deelel | I 04 | 4 | | 44:00 | | AM Deele | 1 | 1 | | 44.00 | | | | AM Peak I | | | | 11:00
48 | | AM Peak I | | | | 11:00
40 | | | | | | | | | 0/ | | | | | 47.62 9 | | | | AM Peak I | | | | 85.71 | 70 | | | | | | | | | PM Peak I | | | | 12:45 | | | | | | 14:15 | | | | PM Peak I | | | | 78 | 0/ | PM Peak Hour Total 7:
PM Peak Hour Factor 75.0 | | | | | | | | PM Peak I | our Fa | ctor | | 81.25 | % | PM Peak Hour Factor | | | | | | 6/22/07 @ 13:36:02 File Name: EB FRONT ST.xls Page 4 of 4 Site Name EB + WB Front St Jurisdiction Study Type Volume (2-way) Location Code 9859 Direction None Date 8/11/2006 Real Time 11:57 Start Date 8/11/2006 Start Time 12:00 Sample Time 00:15 Operator Number 57 Machine Number 33 EB + WB volumes - subtract EB volumes to get WB volumes Friday, August 11, 2006 | | (| 08-11-80 | 6 (Ch2 | (2-1)) | | 08-12-06 (Ch2(2-1)) | | | | 08-13-06 (Ch2(2-1)) | | | | | | 08-14-06 (Ch2(2-1)) | | | | | | | |-------|---------|----------|--------|-------------|-------|---------------------|----------|----------|------|---------------------|------|---------|----------|---------|---------|---------------------|-------|-----------|--------|-------|---------|---------| | HR | HR | | | | HR | HR | | | | | HR | HR | | | | | HR | HR | | | | | | Begin | Total | 00-15 | 15-30 | 30-45 45-00 | Begin | Total | 00-15 | 15-30 30 | 0-45 | 45-00 | Begi | n Total | 00-15 | 5 15-30 | 30-45 4 | 5-00 | Begin | Total | 00-15 | 15-30 | 30-45 4 | 5-00 | | 00 | | | | | 00 | 12 | 2 | 2 | 6 | 2 | 00 | | - | 0 0 | 3 | 0 | 00 | 5 | 0 | 2 | 1 | 2 | | 01 | | | | | 01 | 1 | 0 | 1 | 0 | 0 | 01 | | 8 2 | 2 1 | 3 | 2 | 01 | 0 | 0 | 0 | 0 | 0 | | 02 | | | | | 02 | 2 | 0 | 1 | 1 | 0 | 02 | | 0 (| 0 0 | 0 | 0 | 02 | 0 | 0 | 0 | 0 | 0 | | 03 | | | | | 03 | 0 | | 0 | 0 | 0 | 03 | | 7 | 1 2 | 1 | 0 | 03 | 0 | 0 | 0 | 0 | 0 | | 04 | | | | | 04 | 0 | 0 | 0 | 0 | 0 | 04 | | 0 (| 0 0 | 0 | 0 | 04 | 0 | 0 | 0 | 0 | 0 | | 05 | | | | | 05 | 2 | 0 | 0 | 1 | 1 | 05 | | 7 (| 0 1 | 5 | 1 | 05 | 0 | 0 | 0 | 0 | 0 | | 06 | | | | | 06 | 14 | 2 | 4 | 3 | 5 | 06 | | 7 | 1 2 | 1 | 3 | 06 | 0 | 0 | 0 | 0 | 0 | | 07 | | | | | 07 | 14 | 4 | 3 | 4 | 3 | 07 | | - | 1 4 | 6 | 4 | 07 | 4 | 1 | 0 | 1 | 2 | | 80 | | | | | 08 | 31 | 5 | 7 | 8 | 11 | 08 | 4 | 7 10 | 0 12 | 7 | 18 | 08 | 10 | 0 | 3 | 3 | 4 | | 09 | | | | | 09 | 73 | 24 | 15 | 13 | 21 | 09 | 8 | 8 2 | - | 18 | 27 | 09 | 28 | 0 | 0 | 7 | 21 | | 10 | | | | | 10 | 166 | 24 | 58 | 43 | 41 | 10 | 11 | 8 23 | 3 19 | 44 | 32 | 10 | 107 | 27 | 29 | 22 | 29 | | 11 | | | | | 11 | 239 | 49 | 58 | 60 | 72 | 11 | 25 | 4 52 | 2 49 | 73 | 80 | 11 | 127 | 26 | 28 | 31 | 42 | | 12 | 204 | | 66 | 49 54 | 12 | 250 | 51 | 62 | 80 | 57 | 12 | 23 | 5 59 | | 43 | 62 | 12 | 160 | 47 | 30 | 46 | 37 | | 13 | 221 | 64 | 37 | 61 59 | 13 | 295 | 75 | 75 | 78 | 67 | 13 | 19 | 5 5 | 1 52 | 47 | 45 | 13 | 150 | 43 | 37 | 38 | 32 | | 14 | 259 | 78 | 73 | 61 47 | 14 | 195 | 66 | 51 | 45 | 33 | 14 | 23 | 4 48 | 8 82 | 44 | 60 | 14 | 147 | 31 | 49 | 36 | 31 | | 15 | 167 | 50 | | 39 47 | 15 | 203 | 53 | 53 | 57 | 40 | 15 | 24 | 2 5 | | 62 | 58 | 15 | 126 | 36 | 28 | 29 | 33 | | 16 | 210 | 41 | 46 | 65 58 | 16 | 212 | 64 | 51 | 50 | 47 | 16 | 17 | 5 48 | 8 42 | 58 | 27 | 16 | 116 | 38 | 33 | 15 | 30 | | 17 | 162 | | 25 | 48 37 | 17 | 158 | 46 | 38 | 33 | 41 | 17 | 17 | 2 50 | 0 29 | 37 | 56 | 17 | 103 | 23 | 35 | 28 | 17 | | 18 | 173 | | 45 | 45 36 | 18 | 124 | 24 | 42 | 23 | 35 | 18 | 12 | 3 4 | 1 26 | 26 | 30 | 18 | 59 | 9 | 17 | 20 | 13 | | 19 | 90 | 27 | 29 | 24 10 | 19 | 74 | 20 | 20 | 20 | 14 | 19 | 8 | 7 26 | - | 21 | 19 | 19 | 59 | 10 | 17 | 16 | 16 | | 20 | 55 | 13 | 19 | 10 13 | 20 | 73 | 30 | 23 | 5 | 15 | 20 | | 2 22 | 2 19 | 23 | 8 | 20 | 32 | 6 | 11 | 4 | 11 | | 21 | 49 | 19 | 12 | 5 13 | 21 | 41 | 8 | 13 | 9 | 11 | 21 | 2 | 2 | 4 8 | 7 | 3 | 21 | 17 | 5 | 4 | 6 | 2 | | 22 | 24 | 10 | 5 | 6 3 | 22 | 16 | 3 | 2 | 6 | 5 | 22 | 1 | 1 10 | 0 0 | 1 | 0 | 22 | 8 | 0 | 7 | 1 | 0 | | 23 | 6 | 5 | 0 | 1 0 | 23 | 13 | 4 | 8 | 1 | 0 | 23 | | 1 (| 0 0 | 1 | 0 | 23 | 4 | 2 | 1 | 0 | 1 | | | 1620 | Total | | | | 2208 | Total | | | | | 212 | 0 Total | | | | | 1262 | Γotal | AM Peak | Hour St | art | | | AM Peak | Hour Sta | ırt | | 11:00 | | AM Pea | k Hour S | Start | 1 | 1:00 | | AM Peak H | our St | art | , | 11:00 | | | AM Peak | Hour To | tal | | | AM Peak | Hour Tot | al | | 239 | | AM Pea | k Hour T | Γotal | | 254 | | AM Peak H | our To | tal | | 127 | | | AM Peak | Hour Fa | ctor | | | AM Peak | Hour Fac | ctor | | 82.99 % | | AM Pea | k Hour F | actor | 7 | 9.38 % | | AM Peak H | our Fa | ctor | 7 | 75.60 % | | | PM Peak | Hour St | art | 13:30 | | PM Peak | Hour Sta | ırt | | 13:00 | | PM Pea | k Hour S | Start | 1 | 4:45 | | PM Peak H | our St | art | , | 12:30 | | | PM Peak | Hour To | tal | 271 | | PM Peak | Hour Tot | al | | 295 | | PM Pea | k Hour T | Total | | 244 | | PM Peak H | our To | tal | | 163 | | | PM Peak | Hour Fa | ctor | 86.86 | % | PM Peak | Hour Fac | ctor | | 94.55 % | 1 | PM Pea | k Hour F | actor | 9 | 1.04 % | | PM Peak H | our Fa | ctor | 8 | 88.59 % | Site Name EB + WB Front St Jurisdiction Study Type Volume (2-way) Location Code 9859 Direction None Date 8/11/2006 Real Time 11:57 Start Date 8/11/2006 Start Time 12:00 Sample Time 00:15 Operator Number 57 Machine Number 33 Tuesday, August 15, 2006 | | 08-15-06 (Ch2(2-1)) | | 08-16-06 (Ch2(2- | 1)) | _ | 08-17-06 (Ch2(2- | 1)) | _ | 08-18-06 (Ch2(2- | 1)) | |-------|-------------------------------|-------|---------------------|------------|-------|---------------------|------------|-------|----------------------|------------| | HR | HR | HR | HR | | HR | HR | | HR | HR | | | Begin | Total 00-15 15-30 30-45 45-00 | Begin | Total 00-15 15-30 3 | 0-45 45-00 | Begin | Total 00-15 15-30 3 | 0-45 45-00 | Begin | Total 00-15 15-30 30 | 0-45 45-00 | | 00 | 3 2 1 0 0 | 00 | 1 1 0 | 0 0 | 00 | 0 0 0 | 0 0 | 00 | 2 1 0 | 0 1 | | 01 | 2 0 2 0 0 | 01 | 1 0 1 | 0 0 | 01 | 0 0 0 | 0 0 | 01 | 2 1 0 | 0 1 | | 02 | 4 1 0 2 1 | 02 | 0 0 0 | 0 0 | 02 | 1 0 0 | 0 1 | 02 | 1 0 0 | 1 0 | | 03 | 0 0 0 0 0 | 03 | 0 0 0 | 0 0 | 03 | 0 0 0 | 0 0 | 03 | 0 0 0 | 0 0 | | 04 | 0 0 0 0 | 04 | 1 0 1 | 0 0 | 04 | 1 0 0 | 1 0 | 04 | 1 0 0 | 1 0 | | 05 | 7 1 0 3 3 | 05 | 3 0 1 | 0 2 | 05 | 2 2 0 | 0 0 | 05 | 3 0 0 | 2 1 | | 06 | 17 3 2 5 7 | 06 | 14 0 1 | 6 7 | 06 | 23 2 5 | 5 11 | 06 | 17 2 0 | 8 7 | | 07 | 29 4 5 13 7 | 07 | 38 8 14 | 12 4 | 07 | 27 9 8 | 2 8 | 07 | 31 3 13 | 8 7 | | 08 | 30 8 12 8 2 | 08 | 50 17 8 | 14 11 | 08 | 56 8 12 | 27 9 | 08 | 27 11 7 | 4 5 | | 09 | 55 6 21 17 11 | 09 | 57 8 14 | 17 18 | 09 | 51 11 9 | 19 12 | 09 | 37 14 12 | 6 5 | | 10 | 122 32 23 29 38 | 10 | 63 14 16 | 17 16 | 10 | 61 10 10 | 21 20 | 10 | 71 9 21 | 19 22 | | 11 | 171 39 39 50 43 | 11 | 88 21 21 | 15 31 | 11 | 144 24 23 | 37 60 | 11 | 101 23 26 | 25 27 | | 12 | 173 46 48 47 32 | 12 | 115 16 27 | 38 34 | 12 | 142 49 35 | 28 30 | 12 | 208 47 69 | 30 62 | | 13 | 167 40 53 44 30 | 13 | 179 36 31 | 69 43 | 13 | 176 36 34 | 47 59 | 13 | 193 49 49 | 48 47 | | 14 | 186 44 65 41 36 | 14 | 150 40 35 | 37 38 | 14 | 138 36 37 | 26 39 | 14 | 216 66 60 | 45 45 | | 15 | 119 22 27 40 30 | 15 | 137 46 40 | 22 29 | 15 | 104 32 29 | 19 24 | 15 | 111 20 32 | 28 31 | | 16 | 92 24 28 26 14 | 16 | 92 14 27 | 32 19 | 16 | 89 34 23 | 9 23 | 16 | 142 35 27 | 51 29 | | 17 | 68 18 15 19 16 | 17 | 69 12 17 | 19 21 | 17 | 73 17 19 | 22 15 | 17 | 146 49 34 | 32 31 | | 18 | 66 19 18 15 14 | 18 | 81 23 30 | 10 18 | 18 | 39 15 6 | 8 10 | 18 | 116 38 21 | 35 22 | | 19 | 55 16 10 17 12 | 19 | 50 15 14 | 12 9 | 19 | 44 10 14 | 13 7 | 19 | 81 23 20 | 17 21 | | 20 | 19 4 8 5 2 | 20 | 27 8 14 | 3 2 | 20 | 33 7 13 | 5 8 | 20 | 64 23 15 | 17 9 | | 21 | 14 6 5 3 0 | 21 | 19 10 4 | 4 1 | 21 | 21 4 2 | 11 4 | 21 | 19 4 5 | 4 6 | | 22 | 8 2 2 1 3 | 22 | 10 1 1 | 4 4 | 22 | 10 4 2 | 3 1 | 22 | 10 4 1 | 3 2 | | 23 | 5 0 0 5 0 | 23 | 8 0 0 | 5 3 | 23 | 3 0 0 | 1 2 | 23 | 8 2 0 | 2 4 | | | 1412 Total | | 1253 Total | | | 1238 Total | | | 1607 Total | AM Peak Hour Start 11:00 | 1A | M Peak Hour Start | 11:00 | | AM Peak Hour Start | 11:00 | | AM Peak Hour Start | 11:00 | | | AM Peak Hour Total 171 | 1A | M Peak Hour Total | 88 | | AM Peak Hour Total | 144 | | AM Peak Hour Total |
101 | | | AM Peak Hour Factor 85.50 | % Al | M Peak Hour Factor | 70.97 % | | AM Peak Hour Factor | 60.00 % | | AM Peak Hour Factor | 93.52 % | | | PM Peak Hour Start 14:00 | PI | M Peak Hour Start | 13:30 | I | PM Peak Hour Start | 13:30 | | PM Peak Hour Start | 13:30 | | | PM Peak Hour Total 186 | PI | M Peak Hour Total | 187 | I | PM Peak Hour Total | 179 | | PM Peak Hour Total | 221 | | | PM Peak Hour Factor 71.54 | % PI | M Peak Hour Factor | 67.75 % | | PM Peak Hour Factor | 75.85 % | | PM Peak Hour Factor | 83.71 % | Site Name EB + WB Front St Jurisdiction Study Type Volume (2-way) Location Code 9859 Direction None Date 8/11/2006 Real Time 11:57 Start Date 8/11/2006 Start Time 12:00 Sample Time 00:15 Operator Number 57 33 Machine Number Saturday, August 19, 2006 | | 08-19-06 (Ch2(2-1)) | | 08-20-06 (Ch2(| 2-1)) | | 08-21-06 (Ch2(2 | -1)) | | 08-22-06 (Ch2(2 | :-1)) | |-------|-------------------------------|-------|---------------------|-------------|-------|---------------------|-------------|-------|---------------------|-------------| | HR | HR | HR | HR | | HR | HR | | HR | HR | | | Begin | Total 00-15 15-30 30-45 45-00 | Begin | Total 00-15 15-30 | 30-45 45-00 | Begin | Total 00-15 15-30 3 | 80-45 45-00 | Begin | Total 00-15 15-30 3 | 30-45 45-00 | | 00 | 8 3 4 1 0 | 00 | 3 0 0 | 0 3 | 00 | 1 0 1 | 0 0 | 00 | 0 0 0 | 0 0 | | 01 | 1 0 1 0 0 | 01 | 3 2 1 | 0 0 | 01 | 2 1 0 | 1 0 | 01 | 2 0 1 | 1 0 | | 02 | 2 1 0 1 0 | 02 | 0 0 0 | 0 0 | 02 | 5 2 0 | 2 1 | 02 | 0 0 0 | 0 0 | | 03 | 1 0 0 1 0 | 03 | 6 0 3 | 0 3 | 03 | 0 0 0 | 0 0 | 03 | 0 0 0 | 0 0 | | 04 | 0 0 0 0 0 | 04 | 1 1 0 | 0 0 | 04 | 3 0 2 | 0 1 | 04 | 0 0 0 | 0 0 | | 05 | 3 0 1 0 2 | 05 | 4 0 0 | 0 4 | 05 | 4 0 0 | 4 0 | 05 | 1 0 0 | 0 1 | | 06 | 11 0 0 6 5 | 06 | 8 1 3 | 3 1 | 06 | 18 6 5 | 2 5 | 06 | 21 1 0 | 8 12 | | 07 | 20 4 2 8 6 | 07 | 26 5 9 | 6 6 | 07 | 26 3 11 | 3 9 | 07 | 30 2 4 | 11 13 | | 08 | 53 11 5 11 26 | 08 | 44 4 13 | 9 18 | 80 | 40 12 12 | 8 8 | 80 | 33 5 7 | 14 7 | | 09 | 83 13 27 24 19 | 09 | 89 28 14 | 19 28 | 09 | 52 14 11 | 7 20 | 09 | 52 19 2 | 7 24 | | 10 | 99 19 20 34 26 | 10 | 153 18 33 | 31 71 | 10 | 75 16 16 | 21 22 | 10 | 88 17 15 | 35 21 | | 11 | 178 38 45 46 49 | 11 | 137 41 38 | 24 34 | 11 | 92 31 24 | 14 23 | 11 | 134 31 27 | 32 44 | | 12 | 151 29 49 34 39 | 12 | 234 47 69 | 49 69 | 12 | 113 27 38 | 23 25 | 12 | 212 61 55 | 47 49 | | 13 | 235 48 55 68 64 | 13 | 247 59 62 | 78 48 | 13 | 146 36 35 | 44 31 | 13 | 165 37 46 | 47 35 | | 14 | 190 43 46 51 50 | 14 | 196 61 45 | 37 53 | 14 | 108 30 27 | 25 26 | 14 | 172 45 55 | 39 33 | | 15 | 171 40 49 39 43 | 15 | 190 58 47 | 43 42 | 15 | 84 33 24 | 18 9 | 15 | 100 23 25 | 32 20 | | 16 | 215 53 70 47 45 | 16 | 145 39 23 | 35 48 | 16 | 74 17 19 | 25 13 | 16 | 94 26 21 | 28 19 | | 17 | 137 34 38 37 28 | 17 | 140 40 39 | 31 30 | 17 | 63 16 15 | 16 16 | 17 | 102 46 20 | 13 23 | | 18 | 114 22 16 44 32 | 18 | 69 18 22 | 17 12 | 18 | 79 22 20 | 25 12 | 18 | 60 17 14 | 12 17 | | 19 | 62 13 26 13 10 | 19 | 56 14 10 | 13 19 | 19 | 59 20 14 | 12 13 | 19 | 59 12 14 | 11 22 | | 20 | 38 8 16 9 5 | 20 | 24 12 9 | 1 2 | 20 | 39 10 14 | 15 0 | 20 | 38 3 18 | 12 5 | | 21 | 39 11 11 6 11 | 21 | 22 5 7 | 3 7 | 21 | 13 7 3 | 3 0 | 21 | 26 13 2 | 6 5 | | 22 | 24 5 8 6 5 | 22 | 5 1 2 | 2 0 | 22 | 11 5 0 | 5 1 | 22 | 11 2 5 | 0 4 | | 23 | 8 2 2 3 1 | 23 | 3 2 0 | 1 0 | 23 | 3 0 1 | 0 2 | 23 | 10 0 4 | 4 2 | | | 1843 Total | | 1805 Total | | | 1110 Total | • | | 1410 Total | AM Peak Hour Start 11:00 | | AM Peak Hour Start | 10:30 | | AM Peak Hour Start | 10:30 | | AM Peak Hour Start | 11:00 | | | AM Peak Hour Total 178 | | AM Peak Hour Total | 181 | | AM Peak Hour Total | 98 | | AM Peak Hour Total | 134 | | | AM Peak Hour Factor 90.82 % | | AM Peak Hour Factor | 63.73 % | | AM Peak Hour Factor | 79.03 % | | AM Peak Hour Factor | 76.14 % | | | PM Peak Hour Start 13:00 | | PM Peak Hour Start | 12:45 | | PM Peak Hour Start | 13:00 | | PM Peak Hour Start | 12:00 | | | PM Peak Hour Total 235 | | PM Peak Hour Total | 268 | | PM Peak Hour Total | 146 | | PM Peak Hour Total | 212 | | | PM Peak Hour Factor 86.40 % | | PM Peak Hour Factor | 85.90 % | | PM Peak Hour Factor | 82.95 % | | PM Peak Hour Factor | 86.89 % | Site Name EB + WB Front St Jurisdiction Study Type Volume (2-way) Location Code 9859 Direction None Date 8/11/2006 Real Time 11:57 Start Date 8/11/2006 Start Time 12:00 00:15 Sample Time Operator Number 57 Machine Number 33 Wednesday, August 23, 2006 | | С | 8-23-06 | 6 (Ch2) | (2-1)) | | | (| 8-24-06 | 6 (Ch2 | (2-1)) | | |-------|---------------------------|----------|---------|--------|--------------------|---------|---------|----------|---------|--------|---------| | HR | HR | | | | | HR | HR | | | | | | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | | 00 | 5 | 0 | 0 | 5 | 0 | 00 | 1 | 0 | 1 | 0 | 0 | | 01 | 3 | 0 | 0 | 3 | 0 | 01 | 1 | 0 | 1 | 0 | 0 | | 02 | 0 | 0 | 0 | 0 | 0 | 02 | 0 | 0 | 0 | 0 | 0 | | 03 | 0 | 0 | 0 | 0 | 0 | 03 | 1 | 0 | 1 | 0 | 0 | | 04 | 2 | 0 | 0 | 2 | 0 | 04 | 3 | 0 | 3 | 0 | 0 | | 05 | 3 | 0 | 0 | 0 | 3 | 05 | 1 | 0 | 0 | 0 | 1 | | 06 | 30 | 1 | 2 | 15 | 12 | 06 | 14 | 0 | 2 | 4 | 8 | | 07 | 25 | 4 | 7 | 13 | 1 | 07 | 33 | 9 | 13 | 9 | 2 | | 80 | 34 | 7 | 8 | 5 | 14 | 08 | 54 | 17 | 6 | 23 | 8 | | 09 | 46 | 18 | 3 | 13 | 12 | 09 | 49 | 4 | 9 | 20 | 16 | | 10 | 65 | 8 | 21 | 17 | 19 | 10 | 88 | 19 | 18 | 24 | 27 | | 11 | 124 | 31 | 27 | 39 | 27 | 11 | 115 | 25 | 28 | 14 | 48 | | 12 | 167 | 20 | 39 | 42 | 66 | 12 | 215 | 60 | 61 | 41 | 53 | | 13 | 184 | 50 | 59 | 43 | 32 | 13 | 127 | 29 | 30 | 46 | 22 | | 14 | 106 | 28 | 24 | 22 | 32 | 14 | 157 | 46 | 44 | 29 | 38 | | 15 | 98 | 25 | 32 | 19 | 22 | 15 | | | | | | | 16 | 73 | 13 | 8 | 31 | 21 | 16 | | | | | | | 17 | 72 | 19 | 10 | 22 | 21 | 17 | | | | | | | 18 | 60 | 7 | 15 | 25 | 13 | 18 | | | | | | | 19 | 76 | 15 | 20 | 22 | 19 | 19 | | | | | | | 20 | 28 | 10 | 11 | 4 | 3 | 20 | | | | | | | 21 | 27 | 6 | 5 | 12 | 4 | 21 | | | | | | | 22 | 15 | 7 | 2 | 2 | 4 | 22 | | | | | | | 23 | 2 | 0 | 0 | 2 | 0 | 23 | | | | | | | | 1245 | Total | | | | | 859 | Total | AM Peak I | Hour Sta | art | | 11:00 | | AM Peak | Hour Sta | art | | 11:00 | | | AM Peak Hour Total 124 | | | | AM Peak | Hour To | tal | | 115 | | | | | AM Peak Hour Factor 79.49 | | | % | AM Peak | Hour Fa | ctor | | 59.90 % | | | | | PM Peak Hour Start 12:45 | | | | PM Peak Hour Start | | | | 12:00 | | | | | PM Peak I | Hour To | tal | | 218 | | PM Peak | Hour To | tal | | 215 | | | PM Peak I | Hour Fa | ctor | | 82.58 | % | PM Peak | Hour Fa | ctor | | 88.11 % | Site Name NB/SB MONTE RD 2-directional volume Jurisdiction Study Type Volume (ch1) Location Code 9873 Direction None Date 8/18/2006 Real Time 17:30 Start Date 8/18/2006 Start Time 18:00 Sample Time 00:15 Operator Number 29 815 Machine Number Friday, August 18, 2006 | | 08-18-06 (Ch1) | | | | | | | | | | |-------|----------------|-------|-------|-------|-------|--|--|--|--|--| | HR | HR | | | | | | | | | | | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | | | | | | | 00 | | | | | | | | | | | | 01 | | | | | | | | | | | | 02 | | | | | | | | | | | | 03 | | | | | | | | | | | | 04 | | | | | | | | | | | | 05 | | | | | | | | | | | | 06 | | | | | | | | | | | | 07 | | | | | | | | | | | | 80 | | | | | | | | | | | | 09 | | | | | | | | | | | | 10 | | | | | | | | | | | | 11 | | | | | | | | | | | | 12 | | | | | | | | | | | | 13 | | | | | | | | | | | | 14 | | | | | | | | | | | | 15 | | | | | | | | | | | | 16 | | | | | | | | | | | | 17 | | | | | | | | | | | | 18 | 42 | 14 | 11 | 10 | 7 | | | | | | | 19 | 24 | 10 | 5 | 5 | 4 | | | | | | | 20 | 26 | 7 | 8 | 8 | 3 | | | | | | | 21 | 22 | 5 | 8 | 3 | 6 | | | | | | | 22 | 9 | 3 | 3 | 2 | 1 | | | | | | | 23 | 14 | 5 | 2 | 4 | 3 | | | | | | | | 137 | Total | | | | | | | | | | 131 10tai | | |---------------------|---------| | <u> </u> | | | AM Peak Hour Start | | | AM Peak Hour Total | | | AM Peak Hour Factor | | | PM Peak Hour Start | 18:00 | | PM Peak Hour Total | 42 | | PM Peak Hour Factor | 75.00 % | | | | | | 08-19-06 (Ch1) | | | | | | | | | |-------|----------------|-------|-------|-------|-------|--|--|--|--| | HR | HR | | | | | | | | | | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | | | | | | 00 | 5 | 3 | 1 | 0 | 1 | | | | | | 01 | 1 | 0 | 0 | 1 | 0 | | | | | | 02 | 3 | 2 | 0 | 1 | 0 | | | | | | 03 | 0 | 0 | 0 | 0 | 0 | | | | | | 04 | 0 | 0 | 0 | 0 | 0 | | | | | | 05 | 3 | 1 | 1 | 0 | 1 | | | | | | 06 | 12 | 3 | 0 | 4 | 5 | | | | | | 07 | 18 | 4 | 1 | 5 | 8 | | | | | | 80 | 55 | 16 | 5 | 14 | 20 | | | | | | 09 | 43 | 14 | 8 | 10 | 11 | | | | | | 10 | 56 | 15 | 18 | 14 | 9 | | | | | | 11 | 60 | 11 | 17 | 16 | 16 | | | | | | 12 | 59 | 15 | 17 | 7 | 20 | | | | | | 13 | 40 | 6 | 11 | 18 | 5 | | | | | | 14 | 47 | 15 | 12 | 8 | 12 | | | | | | 15 | 47 | 18 | 5 | 10 | 14 | | | | | | 16 | 32 | 5 | 9 | 6 | 12 | | | | | | 17 | 60 | 19 | 15 | 18 | 8 | | | | | | 18 | 39 | 10 | 10 | 7 | 12 | | | | | | 19 | 40 | 10 | 15 | 9 | 6 | | | | | | 20 | 31 | 5 | 8 | 6 | 12 | | | | | | 21 | 27 | 4 | 14 | 3 | 6 | | | | | | 22 | 19 | 5 | 7 | 1 | 6 | | | | | | 23 | 11 | 3 | 4 | 0 | 4 | | | | | | | 708 | Total | | | | | | | | | AM Peak Hour Start | 11:00 | |---------------------|---------| | AM Peak Hour Total | 60 | | AM Peak Hour Factor | 88.24 % | | PM Peak Hour Start | 16:45 | | PM Peak Hour Total | 64 | | PM Peak Hour Factor | 84.21 % | | | | | | | 08-20 | -06 (Ch | ո1) | | |-------|-------|-------|---------|-------|-------| | HR | HR | | | | | | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | | 00 | 4 | 1 | 0 | 2 | 1 | | 01 | 2 | 0 | 0 | 0 | 2 | | 02 | 0 | 0 | 0 | 0 | 0 | | 03 | 0 | 0 | 0 | 0 | 0 | | 04 | 0 | 0 | 0 | 0 | 0 | | 05 | 3 | 0 | 0 | 2 | 1 | | 06 | 20 | 2 | 5 | 6 | 7 | | 07 | 10 | 1 | 3 | 2 | 4 | | 80 | 26 | 3 | 6 | 9 | 8 | | 09 | 34 | 4 | 6 | 6 | 18 | | 10 | 29 | 9 | 8 | 6 | 6 | | 11 | 28 | 2 | 11 | 11 |
4 | | 12 | 42 | 14 | 12 | 10 | 6 | | 13 | 58 | 7 | 15 | 19 | 17 | | 14 | 39 | 9 | 6 | 14 | 10 | | 15 | 43 | 17 | 9 | 7 | 10 | | 16 | 50 | 12 | 13 | 9 | 16 | | 17 | 50 | 14 | 15 | 10 | 11 | | 18 | 45 | 14 | 9 | 14 | 8 | | 19 | 32 | 10 | 9 | 8 | 5 | | 20 | 20 | 7 | 3 | 4 | 6 | | 21 | 9 | 4 | 2 | 2 | 1 | | 22 | 15 | 4 | 5 | 3 | 3 | | 23 | 2 | 1 | 0 | 0 | 1 | | | 561 | Total | | | | | | | | | | | | AM Peak Hour Start | 09:30 | |---------------------|---------| | AM Peak Hour Total | 41 | | AM Peak Hour Factor | 56.94 % | | PM Peak Hour Start | 13:15 | | PM Peak Hour Total | 60 | | PM Peak Hour Factor | 78.95 % | | | | | | | 08-21 | -06 (Ch | ո1) | | |-------|-------|-------|---------|-------|-------| | HR | HR | | | | | | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | | 00 | 1 | 0 | 1 | 0 | 0 | | 01 | 0 | 0 | 0 | 0 | 0 | | 02 | 1 | 0 | 0 | 0 | 1 | | 03 | 0 | 0 | 0 | 0 | 0 | | 04 | 6 | 1 | 0 | 0 | 5 | | 05 | 14 | 3 | 2 | 2 | 7 | | 06 | 23 | 3 | 3 | 6 | 11 | | 07 | 41 | 5 | 8 | 15 | 13 | | 80 | 51 | 18 | 12 | 11 | 10 | | 09 | 36 | 4 | 8 | 8 | 16 | | 10 | 51 | 11 | 12 | 14 | 14 | | 11 | 40 | 6 | 6 | 12 | 16 | | 12 | 42 | 8 | 10 | 10 | 14 | | 13 | 38 | 6 | 8 | 15 | 9 | | 14 | 57 | 16 | 18 | 16 | 7 | | 15 | 47 | 13 | 14 | 9 | 11 | | 16 | 45 | 11 | 9 | 15 | 10 | | 17 | 66 | 17 | 20 | 17 | 12 | | 18 | 59 | 16 | 19 | 10 | 14 | | 19 | 27 | 8 | 8 | 7 | 4 | | 20 | 21 | 1 | 6 | 5 | 9 | | 21 | 14 | 4 | 5 | 4 | 1 | | 22 | 10 | 3 | 1 | 2 | 4 | | 23 | 6 | 0 | 2 | 3 | 1 | | | 696 | Total | | | | | | | | | | | AM Peak Hour Start AM Peak Hour Total PM Peak Hour Start PM Peak Hour Total PM Peak Hour Factor AM Peak Hour Factor 07:30 17:00 58 80.56 % 66 82.50 % Site Name NB/SB MONTE RD Jurisdiction Study Type Volume (ch1) Location Code 9873 Direction None Date 8/18/2006 Real Time 17:30 Start Date 8/18/2006 Start Time 18:00 Sample Time 00:15 Operator Number 29 Machine Number 815 Tuesday, August 22, 2006 | | 08-22-06 (Ch1) | | 08-23-06 (Ch | 1) | | 08-24-06 (Ch1 |) | | 08-25-06 (Ch1 |) | |-------|-----------------------------|--------------------|-----------------------|-------------|-------|----------------------|-------------|-------|----------------------|----------------| | HR | HR | HR | HR | | HR | HR | | HR | HR | | | Begin | Total 00-15 15-30 30-45 45- | 00 Begin | Total 00-15 15-30 | 30-45 45-00 | Begin | Total 00-15 15-30 3 | 30-45 45-00 | Begin | Total 00-15 15-30 3 | 0-45 45-00 | | 00 | 4 2 0 2 | 00 | 3 0 1 | 1 1 | 00 | 0 0 0 | 0 0 | 00 | 2 0 1 | 0 1 | | 01 | 0 0 0 0 | <u>0</u> 01 | 2 0 2 | 0 0 | 01 | 0 0 0 | 0 0 | 01 | 1 0 1 | 0 0 | | 02 | 0 0 0 0 | 0 02 | 1 1 0 | 0 0 | 02 | 0 0 0 | 0 0 | 02 | 0 0 0 | 0 0 | | 03 | 0 0 0 0 | 0 03 | 1 0 1 | 0 0 | 03 | 0 0 0 | 0 0 | 03 | 0 0 0 | 0 0 | | 04 | 1 1 0 0 | 0 04 | 1 1 0 | 0 0 | 04 | 2 1 1 | 0 0 | 04 | 1 1 0 | 0 0 | | 05 | 10 2 3 4 | <u>1</u> 05 | 13 2 0 | 5 6 | 05 | 5 3 0 | 0 2 | 05 | 6 0 0 | 4 2 | | 06 | 17 3 5 4 | <u>5</u> 06 | 26 7 2 | 5 12 | 06 | 24 5 7 | 8 4 | 06 | 21 3 4 | 4 10 | | 07 | | <mark>22</mark> 07 | 52 5 12 | 11 24 | 07 | 50 8 6 | 23 13 | 07 | 40 10 9 | 11 10 | | 08 | | <mark>12</mark> 08 | 47 10 18 | 10 9 | 80 | 50 13 7 | 14 16 | 80 | 52 19 9 | 7 17 | | 09 | | <mark>I1</mark> 09 | 33 7 11 | 6 9 | 09 | 46 12 14 | 11 9 | 09 | 42 11 8 | 14 9 | | 10 | | <mark>16</mark> 10 | 45 8 18 | 8 11 | 10 | 55 14 5 | 16 20 | 10 | 40 7 15 | 7 11 | | 11 | | <mark>14</mark> 11 | 50 15 12 | 10 13 | 11 | 49 15 5 | 14 15 | 11 | 44 8 12 | 13 11 | | 12 | | 15 12 | 43 12 11 | 11 9 | 12 | 43 7 15 | 10 11 | 12 | 53 19 4 | 13 17 | | 13 | | 13 | 47 8 13 | 13 13 | 13 | 37 11 6 | 12 8 | 13 | 58 11 17 | 13 17 | | 14 | | 14 | 40 11 6 | 17 6 | 14 | 52 14 13 | 19 6 | 14 | 50 14 15 | 16 5 | | 15 | | 15 | 58 17 19 | 12 10 | 15 | 47 18 8 | 12 9 | 15 | 62 14 17 | 13 18 | | 16 | | 1 5 | 65 16 18 | 13 18 | 16 | 61 11 13 | 19 18 | 16 | 52 14 12 | 13 13 | | 17 | 57 14 16 19 | 8 17 | 61 16 14 | 16 15 | 17 | 67 11 25 | 17 14 | 17 | 74 26 19 | 15 14 | | 18 | | 18 | 44 14 11 | 7 12 | 18 | 38 9 13 | 9 7 | 18 | 52 19 10 | 10 13 | | 19 | | 19 | 41 9 8 | 9 15 | 19 | 35 8 13 | 4 10 | 19 | 50 13 17 | 8 12 | | 20 | 30 11 5 7 | 7 20 | 28 6 10 | 7 5 | 20 | 27 5 10 | 4 8 | 20 | 34 16 7 | 9 2 | | 21 | 14 4 0 5 | 5 21 | 24 7 9 | 4 4 | 21 | 20 6 6 | 4 4 | 21 | 29 5 5 | 5 14 | | 22 | 15 6 5 2 | 2 22 | 11 4 3 | 1 3 | 22 | 11 6 2 | 3 0 | 22 | 24 11 2 | 5 6 | | 23 | 5 2 2 0 | 1 23 | 2 0 0 | 2 0 | 23 | 9 5 1 | 0 3 | 23 | 18 8 1 | 5 4 | | | 735 Total | | 738 Total | | | 728 Total | | | 805 Total | | | | | | | | | | | | | | | | AM De ale Harris Otant | 20 | AM De els Hesse Otent | 07:00 | | AM Deels Herry Otent | 07:00 | | AM Deels Herry Otent | 00.00 | | | AM Peak Hour Start 07: | | AM Peak Hour Start | 07:30 | | AM Peak Hour Start | 07:30 | | AM Peak Hour Start | 08:00 | | | | 33 | AM Peak Hour Total | 63 | | AM Peak Hour Total | 56 | | AM Peak Hour Total | 52 | | | | 59 % | AM Peak Hour Factor | 65.63 % | | AM Peak Hour Factor | 60.87 % | | AM Peak Hour Stort | 68.42 % | | | PM Peak Hour Total | | PM Peak Hour Start | 16:00 | | PM Peak Hour Start | 16:30 | | PM Peak Hour Start | 17:00 | | | | 36
50.9/ | PM Peak Hour Total | 65 | | PM Peak Hour Total | 73 | | PM Peak Hour Total | 74
71 15 9/ | | | PM Peak Hour Factor 82. | 50 % | PM Peak Hour Factor | 90.28 % | | PM Peak Hour Factor | 73.00 % | | PM Peak Hour Factor | 71.15 % | Site Name NB/SB MONTE RD Jurisdiction Study Type Volume (ch1) Location Code 9873 Direction None Date 8/18/2006 Real Time 17:30 Start Date 8/18/2006 Start Time 18:00 00:15 Sample Time Operator Number 29 Machine Number 815 Saturday, August 26, 2006 | | | 08-26 | -06 (Cł | ո1) | | |-------|-------|-------|---------|-------|-------| | HR | HR | | | | | | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | | 00 | 5 | 3 | 1 | 0 | 1 | | 01 | 1 | 1 | 0 | 0 | 0 | | 02 | 0 | 0 | 0 | 0 | 0 | | 03 | 0 | 0 | 0 | 0 | 0 | | 04 | 0 | 0 | 0 | 0 | 0 | | 05 | 7 | 3 | 4 | 0 | 0 | | 06 | 7 | 1 | 2 | 2 | 2 | | 07 | 21 | 5 | 7 | 1 | 8 | | 80 | 38 | 4 | 10 | 11 | 13 | | 09 | 45 | 13 | 13 | 9 | 10 | | 10 | 55 | 10 | 9 | 22 | 14 | | 11 | 62 | 12 | 15 | 18 | 17 | | 12 | 55 | 10 | 17 | 13 | 15 | | 13 | 64 | 16 | 13 | 16 | 19 | | 14 | 18 | 18 | | | | | 15 | | | | | | | 16 | | | | | | | 17 | | | | | | | 18 | | | | | | | 19 | | | | | | | 20 | | | | | | | 21 | | | | | | | 22 | | | | | | | 23 | | | | | | | | 378 | Total | | | | AM Peak Hour Start 10:30 AM Peak Hour Total 63 AM Peak Hour Factor 71.59 % PM Peak Hour Start 13:15 PM Peak Hour Total 66 PM Peak Hour Factor 86.84 % Site Name NB Ontario Jurisdiction Study Type Volume (ch1) Location Code 9873 Direction North Date 8/11/2006 Real Time 16:50 Start Date 8/11/2006 Start Time 17:00 Sample Time 00:15 Operator Number 57 Machine Number 27 Friday, August 11, 2006 | | | 08-11-06 (C | h1) | | 08-12-06 (Ch | 11) | | C | 08-13-06 (Ch1) | | 08-14-06 | (Ch1) | |-------|---------|-------------|-------------|-------|---------------------|-------------|-------|------------|------------------------|-------|---------------------|-----------------| | HR | HR | | | HR | HR | <u>.</u> | HR | HR | | HR | HR | | | Begin | Total | 00-15 15-30 | 30-45 45-00 | Begin | Total 00-15 15-30 | 30-45 45-00 | Begin | Total 0 | 0-15 15-30 30-45 45-00 | Begin | Total 00-15 15- | -30 30-45 45-00 | | 00 | | | | 00 | 3 1 0 | 0 2 | 00 | 3 | 0 2 0 1 | 00 | 0 0 | 0 0 0 | | 01 | | | | 01 | 4 3 0 | 1 0 | 01 | 1 | 0 1 0 0 | 01 | 1 0 | 0 0 1 | | 02 | | | | 02 | 1 0 0 | 0 1 | 02 | 0 | 0 0 0 0 | 02 | 1 0 | 0 1 0 | | 03 | | | | 03 | 1 1 0 | 0 0 | 03 | 0 | 0 0 0 0 | 03 | 0 0 | 0 0 0 | | 04 | | | | 04 | 0 0 0 | 0 0 | 04 | 1 | 1 0 0 0 | 04 | 0 0 | 0 0 0 | | 05 | | | | 05 | 1 0 0 | 0 1 | 05 | 0 | 0 0 0 0 | 05 | 0 0 | 0 0 0 | | 06 | | | | 06 | 1 0 0 | 1 0 | 06 | 1 | 0 1 0 0 | 06 | 15 7 | 2 3 3 | | 07 | | | | 07 | 16 4 6 | 3 3 | 07 | 5 | 2 1 1 1 | 07 | 19 4 | 6 4 5 | | 08 | | | | 08 | 14 1 5 | 5 3 | 08 | 12 | 7 1 1 3 | 08 | 22 1 | 6 6 9 | | 09 | | | | 09 | 45 5 9 | 12 19 | 09 | 47 | 5 7 10 25 | 09 | 26 7 | 6 4 9 | | 10 | | | | 10 | 34 10 10 | 6 8 | 10 | 52 | 14 12 10 16 | 10 | | 13 10 18 | | 11 | | | | 11 | 78 11 29 | 18 20 | 11 | 72 | 12 20 13 27 | 11 | 47 18 | 12 9 8 | | 12 | | | | 12 | 94 20 20 | 25 29 | 12 | 69 | 18 20 16 15 | 12 | 37 11 | 9 5 12 | | 13 | | | | 13 | 86 37 15 | 22 12 | 13 | 98 | 16 23 24 35 | 13 | | 19 15 14 | | 14 | | | | 14 | 108 29 31 | 22 26 | 14 | 75 | 9 21 21 24 | 14 | | 10 11 13 | | 15 | | | | 15 | 99 32 30 | 19 18 | 15 | 111 | 33 32 28 18 | 15 | 66 13 | 16 23 14 | | 16 | | | | 16 | 83 19 17 | 20 27 | 16 | 116 | 37 24 23 32 | 16 | | 10 12 14 | | 17 | 52 | 10 23 | 10 9 | 17 | 69 18 20 | 12 19 | 17 | 77 | 27 10 26 14 | 17 | 54 18 | 8 13 15 | | 18 | 51 | 17 17 | 14 3 | 18 | 47 17 18 | 8 4 | 18 | 53 | 13 3 21 16 | 18 | 50 13 | 8 15 14 | | 19 | 43 | 21 5 | 9 8 | 19 | 30 6 4 | 16 4 | 19 | 36 | 2 6 25 3 | 19 | 20 6 | 6 6 2 | | 20 | 17 | 4 2 | 5 6 | 20 | 9 2 4 | 2 1 | 20 | 9 | 2 2 0 5 | 20 | 18 6 | 6 3 3 | | 21 | 10 | 7 2 | 0 1 | 21 | 13 2 3 | 2 6 | 21 | 3 | 2 1 0 0 | 21 | 9 2 | 3 2 2 | | 22 | 6 | 0 4 | _ | 22 | 5 0 1 | 1 3 | 22 | 5 | 0 1 2 2 | 22 | 2 1 | 1 0 0 | | 23 | 3 | 0 3 | 0 0 | 23 | 4 0 0 | 0 4 | 23 | 1 | 0 0 0 1 | 23 | 3 1 | 2 0 0 | | | 182 | Total | | | 845 Total | | | 847 To | otal | | 580 Total | AM Peak | Hour Start | | | AM Peak Hour Start | 11:00 | | AM Peak Ho | our Start 11:00 | | AM Peak Hour Start | 10:15 | | | AM Peak | Hour Total | | | AM Peak Hour Total | 78 | | AM Peak Ho | our Total 72 | | AM Peak Hour Total | 59 | | | AM Peak | Hour Factor | | | AM Peak Hour Factor | 67.24 % | ó | AM Peak Ho | our Factor 66.67 | % | AM Peak Hour Factor | 81.94 % | | | PM Peak | Hour Start | 17:15 | | PM Peak Hour Start | 12:15 | | PM Peak Ho | | | PM Peak Hour Start | 15:00 | | | PM Peak | Hour Total | 59 | | PM Peak Hour Total | 111 | | PM Peak Ho | our Total 117 | | PM Peak Hour Total | 66 | | | PM Peak | Hour Factor | 64.13 | % | PM Peak Hour Factor | 75.00 % | 6 | PM Peak Ho | our Factor 88.64 | % | PM Peak Hour Factor | 71.74 % |
6/22/07 @ 13:10:25 File Name: NB Ontario.xls Page 1 of 2 Site Name NB Ontario Jurisdiction Study Type Volume (ch1) Location Code 9873 Direction North Date 8/11/2006 Real Time 16:50 Start Date 8/11/2006 Start Time 17:00 Sample Time 00:15 Operator Number 57 Machine Number 27 Tuesday, August 15, 2006 | | 08-15-06 (Ch1) | | 08-16-06 (Ch ² | 1) | | 08-17-06 (Ch1 | 1) | | 08-18 | 3-06 (Ch1) | | |-------|------------------------------|-------|---------------------------|-------------|-------|---------------------|-------------|-------|----------------|------------|------------| | HR | HR | HR | HR | | HR | HR | | HR | HR | | | | Begin | Total 00-15 15-30 30-45 45-0 | Begin | Total 00-15 15-30 | 30-45 45-00 | Begin | Total 00-15 15-30 3 | 30-45 45-00 | Begin | Total 00-15 | 15-30 30 |)-45 45-00 | | 00 | 0 0 0 0 | 00 | 3 0 1 | 0 2 | 00 | 2 0 1 | 0 1 | 00 | 0 0 | 0 | 0 0 | | 01 | 0 0 0 0 | 01 | 0 0 0 | 0 0 | 01 | 0 0 0 | 0 0 | 01 | 0 0 | 0 | 0 0 | | 02 | 0 0 0 0 | 02 | 3 1 0 | 0 2 | 02 | 2 0 0 | 0 2 | 02 | 0 0 | 0 | 0 0 | | 03 | 1 0 0 0 | 03 | 1 0 0 | 0 1 | 03 | 0 0 0 | 0 0 | 03 | 1 0 | 1 | 0 0 | | 04 | 1 1 0 0 | 04 | 1 0 0 | 0 1 | 04 | 0 0 0 | 0 0 | 04 | 0 0 | 0 | 0 0 | | 05 | 5 0 0 4 | 05 | 10 1 1 | 5 3 | 05 | 6 0 1 | 4 1 | 05 | 10 2 | 1 | 0 7 | | 06 | | 06 | 11 4 0 | 3 4 | 06 | 12 5 0 | 1 6 | 06 | 6 2 | 1 | 3 0 | | 07 | 25 5 9 7 | 07 | 30 15 10 | 1 4 | 07 | 22 9 7 | 0 6 | 07 | 26 18 | 3 | 1 4 | | 80 | | 08 | 24 3 6 | 9 6 | 80 | 23 1 5 | 7 10 | 08 | 26 4 | 4 | 11 7 | | 09 | | 09 | 21 5 5 | 9 2 | 09 | 31 3 5 | 13 10 | 09 | 23 2 | | 7 7 | | 10 | 40 9 9 11 1 | 10 | 35 8 5 | 11 11 | 10 | 47 3 14 | 9 21 | 10 | 49 12 | 13 | 17 7 | | 11 | 64 24 21 9 1 | | 50 20 10 | 12 8 | 11 | 38 8 10 | 8 12 | 11 | 48 19 | | 11 7 | | 12 | 49 12 9 14 1 | | 54 14 16 | 10 14 | 12 | 62 17 17 | 18 10 | 12 | 57 11 | | 24 11 | | 13 | 49 10 10 10 1 | 13 | 59 20 13 | 12 14 | 13 | 73 17 13 | 23 20 | 13 | 50 16 | | 15 6 | | 14 | | 14 | 70 12 22 | 12 24 | 14 | 54 18 6 | 13 17 | 14 | 54 12 | | 20 10 | | 15 | 69 15 11 32 1 | 15 | 43 12 13 | 12 6 | 15 | 69 12 15 | 19 23 | 15 | 60 11 | | 20 15 | | 16 | 44 13 10 14 | 16 | 53 10 13 | 15 15 | 16 | 76 16 13 | 19 28 | 16 | 83 27 | | 16 23 | | 17 | 70 12 19 21 1 | | 65 14 28 | 11 12 | 17 | 55 11 11 | 10 23 | 17 | 30 9 | _ | 7 8 | | 18 | | 18 | 34 8 8 | 10 8 | 18 | 56 21 12 | 14 9 | 18 | 35 16 | 16 | 3 | | 19 | 57 6 31 10 1 | _ | 58 9 14 | 20 15 | 19 | 26 15 1 | 5 5 | 19 | | | | | 20 | | 20 | 11 4 4 | 2 1 | 20 | 10 3 3 | 1 3 | 20 | | | | | 21 | | 21 | 5 0 0 | 3 2 | 21 | 10 1 5 | 4 0 | 21 | | | | | 22 | | 22 | 6 3 0 | 2 1 | 22 | 7 2 5 | 0 0 | 22 | | | | | 23 | | 23 | 4 0 3 | 1 0 | 23 | 5 0 0 | 5 0 | 23 | | | | | | 633 Total | | 651 Total | | | 686 Total | | | 558 Total | AM Peak Hour Start 10:3 | | AM Peak Hour Start | 10:45 | | AM Peak Hour Start | 10:15 | | AM Peak Hour S | | 10:15 | | | AM Peak Hour Total 6 | | AM Peak Hour Total | 53 | | AM Peak Hour Total | 52 | | AM Peak Hour T | otal | 56 | | | AM Peak Hour Factor 69.7 | | AM Peak Hour Factor | 66.25 % | | AM Peak Hour Factor | 61.90 % | | AM Peak Hour F | | 73.68 % | | | PM Peak Hour Start 13:4 | | PM Peak Hour Start | 16:30 | | PM Peak Hour Start | 16:00 | | PM Peak Hour S | | 16:00 | | | PM Peak Hour Total 7 | | PM Peak Hour Total | 72 | | PM Peak Hour Total | 76 | | PM Peak Hour T | | 83 | | | PM Peak Hour Factor 89.7 | ′ % | PM Peak Hour Factor | 64.29 % | | PM Peak Hour Factor | 67.86 % | | PM Peak Hour F | actor | 76.85 % | 6/22/07 @ 13:10:25 File Name: NB Ontario.xls Page 2 of 2 Site Name SB Ontario Jurisdiction Study Type Volume (ch1) Location Code 8971 Direction South Date 8/11/2006 Real Time 16:35 Start Date 8/11/2006 Start Time 17:00 Sample Time 00:15 Operator Number 57 Machine Number 34 Friday, August 11, 2006 | | | 08-11-06 (C | h1) | | 08-12-06 (Ch | n1) | | 08 | 8-13-06 (Ch1) | | 08-14-06 | (Ch1) | |-------|-----------|-------------|-------------|-------|---------------------|-------------|-------|-------------|-----------------------|-------|---------------------|-----------------| | HR | HR | | | HR | HR | | HR | HR | | HR | HR | | | Begin | Total | 00-15 15-30 | 30-45 45-00 | Begin | Total 00-15 15-30 | 30-45 45-00 | Begin | Total 00 | -15 15-30 30-45 45-00 | Begin | Total 00-15 15- | -30 30-45 45-00 | | 00 | | | | 00 | 1 0 0 | 0 1 | 00 | 2 | 1 1 0 0 | 00 | 0 0 | 0 0 0 | | 01 | | | | 01 | 2 1 0 | 0 1 | 01 | 0 | 0 0 0 0 | 01 | 2 1 | 0 1 0 | | 02 | | | | 02 | 1 0 0 | 1 0 | 02 | 1 | 1 0 0 0 | 02 | 1 1 | 0 0 0 | | 03 | | | | 03 | 0 0 0 | 0 0 | 03 | 0 | 0 0 0 0 | 03 | 0 0 | 0 0 0 | | 04 | | | | 04 | 1 0 1 | 0 0 | 04 | 0 | 0 0 0 0 | 04 | 0 0 | 0 0 0 | | 05 | | | | 05 | 2 1 0 | 0 1 | 05 | 2 | 1 0 1 0 | 05 | 0 0 | 0 0 0 | | 06 | | | | 06 | 5 0 2 | 2 1 | 06 | 3 | 1 0 1 1 | 06 | 9 3 | 2 1 3 | | 07 | | | | 07 | 5 2 1 | 1 1 | 07 | 6 | 1 1 3 1 | 07 | 6 1 | 2 2 1 | | 80 | | | | 08 | 18 1 5 | 8 4 | 08 | 8 | 1 1 2 4 | 08 | 19 1 | 6 5 7 | | 09 | | | | 09 | 25 6 12 | 5 2 | 09 | 18 | 6 6 1 5 | 09 | 19 3 | 9 4 3 | | 10 | | | | 10 | 27 6 3 | 2 16 | 10 | 35 | 6 8 9 12 | 10 | 22 4 | 7 4 7 | | 11 | | | | 11 | 46 15 8 | 13 10 | 11 | 35 | 6 11 8 10 | 11 | 43 3 | 6 23 11 | | 12 | | | | 12 | 44 10 16 | 9 9 | 12 | 57 | 20 10 17 10 | 12 | 34 13 | 4 9 8 | | 13 | | | | 13 | 52 12 16 | 13 11 | 13 | 60 | 19 13 12 16 | 13 | 42 7 | 16 6 13 | | 14 | | | | 14 | 58 21 10 | 12 15 | 14 | 58 | 14 8 10 26 | 14 | 39 9 | 11 9 10 | | 15 | | | | 15 | 62 18 14 | 17 13 | 15 | 46 | 11 9 10 16 | 15 | 43 10 | 13 9 11 | | 16 | | | | 16 | 53 20 14 | 11 8 | 16 | 41 | 12 10 14 5 | 16 | 45 8 | 8 16 13 | | 17 | 127 | 19 43 | 46 19 | 17 | 45 11 15 | 9 10 | 17 | 52 | 8 8 14 22 | 17 | 57 9 | 21 16 11 | | 18 | 32 | 14 7 | 6 5 | 18 | 17 4 8 | 2 3 | 18 | 20 | 4 6 5 5 | 18 | 30 4 | 11 9 6 | | 19 | 16 | 4 4 | 4 4 | 19 | 9 1 1 | 3 4 | 19 | 12 | 2 3 5 2 | 19 | 12 4 | 3 4 1 | | 20 | 11 | 4 (| 1 6 | 20 | 10 4 2 | 1 3 | 20 | 6 | 1 1 3 1 | 20 | 13 0 | 4 3 6 | | 21 | 4 | 3 1 | 0 0 | 21 | 7 4 0 | 1 2 | 21 | 4 | 2 1 0 1 | 21 | 10 5 | 3 2 0 | | 22 | 4 | 0 2 | 2 1 1 | 22 | 3 0 1 | 1 1 | 22 | 2 | 0 1 1 0 | 22 | 2 1 | 1 0 0 | | 23 | 6 | 0 3 | 3 2 1 | 23 | 4 1 1 | 1 1 | 23 | 1 | 1 0 0 0 | 23 | 0 0 | 0 0 0 | | | 200 | Total | | | 497 Total | | | 469 Tot | tal | - | 448 Total | AM Peak I | Hour Start | | | AM Peak Hour Start | 10:45 | | AM Peak Hou | ur Start 10:30 | | AM Peak Hour Start | 11:00 | | | AM Peak I | Hour Total | | | AM Peak Hour Total | 52 | | AM Peak Hou | ur Total 38 | | AM Peak Hour Total | 43 | | | AM Peak I | Hour Factor | | | AM Peak Hour Factor | 81.25 9 | % | AM Peak Hou | ur Factor 79.17 | % | AM Peak Hour Factor | r 46.74 % | | | PM Peak I | Hour Start | 17:00 | | PM Peak Hour Start | 14:45 | | PM Peak Hou | ur Start 13:00 | | PM Peak Hour Start | 16:30 | | | PM Peak I | Hour Total | 127 | | PM Peak Hour Total | 64 | | PM Peak Hou | ur Total 60 | | PM Peak Hour Total | 59 | | | PM Peak I | Hour Factor | 69.02 | % | PM Peak Hour Factor | 88.89 9 | % | PM Peak Hou | ur Factor 78.95 | % | PM Peak Hour Factor | r 70.24 % | 6/22/07 @ 13:17:27 File Name: SB Ontario.xls Page 1 of 2 Site Name SB Ontario Jurisdiction Study Type Volume (ch1) Location Code 8971 Direction South Date 8/11/2006 Real Time 16:35 Start Date 8/11/2006 Start Time 17:00 Sample Time 00:15 Operator Number 57 Machine Number 34 Tuesday, August 15, 2006 | | 08-15-06 (Ch ² | 1) | _ | 08-16-06 (Ch | 1) | | 08-17-06 (Ch | 1) | _ | 08 | 8-18-06 (Ch | 1) | | |-------|---------------------------|-------------|-------|---------------------|-------------|-------|---------------------|-------------|-------|-------------|-------------|----------|---------| | HR | HR | | | | | Begin | Total 00-15 15-30 3 | 30-45 45-00 | Begin | Total 00-15 15-30 | 30-45 45-00 | Begin | Total 00-15 15-30 | 30-45 45-00 | Begin | Total 00 | -15 15-30 | 30-45 45 | 5-00 | | 00 | 0 0 0 | 0 0 | 00 | 0 0 0 | 0 0 | 00 | 2 0 1 | 0 1 | 00 | 2 | 2 0 | 0 | 0 | | 01 | 2 0 0 | 0 2 | 01 | 1 0 0 | 1 0 | 01 | 0 0 0 | 0 0 | 01 | 1 | 0 0 | 1 | 0 | | 02 | 1 1 0 | 0 0 | 02 | 1 1 0 | 0 0 | 02 | 0 0 0 | 0 0 | 02 | 0 | 0 0 | 0 | 0 | | 03 | 0 0 0 | 0 0 | 03 | 1 1 0 | 0 0 | 03 | 1 0 0 | 0 1 | 03 | 0 | 0 0 | 0 | 0 | | 04 | 0 0 0 | 0 0 | 04 | 0 0 0 | 0 0 | 04 | 0 0 0 | 0 0 | 04 | 0 | 0 0 | 0 | 0 | | 05 | 2 1 0 | 1 0 | 05 | 1 0 0 | 0 1 | 05 | 0 0 0 | 0 0 | 05 | 0 | 0 0 | 0 | 0 | | 06 | 7 0 3 | 1 3 | 06 | 4 2 0 | 1 1 | 06 | 10 2 0 | 5 3 | 06 | 3 | 0 0 | 2 | 1 | | 07 | 18 4 5 | 7 2 | 07 | 11 5 1 | 1 4 | 07 | 8 1 2 | 5 0 | 07 | 12 | 3 4 | 2 | 3 | | 80 | 23 3 7 | 6 7 | 80 | 17 1 8 | 3 5 | 08 | 22 3 3 | 8 8 | 08 | 20 | 1 4 | 7 | 8 | | 09 | 12 3 2 | 2 5 | 09 | 21 5 5 | 6 5 | 09 | 26 7 6 | 2 11 | 09 | 27 | 7 5 | 5 | 10 | | 10 | 37 5 11 | 11 10 | 10 | 32 5 8 | 10 9 | 10 | 35 10 3 | 8 14 | 10 | 32 | 7 9 | 5 | 11 | | 11 | 44 12 12 | 5 15 | 11 | 57 10 18 | 15 14 | 11 | 33 6 10 | 8 9 | 11 | 29 | 5 5 | 12 | 7 | | 12 | 40 19 6 | 8 7 | 12 | 43 17 8 | 11 7 | 12 | 28 3 10 | 8 7 | 12 | 38 | 8 6 | 13 | 11 | | 13 | 43 10 10 | 10 13 | 13 | 29 8 12 | 5 4 | 13 | 29 8 2 | 4 15 | 13 | 32 | 12 7 | 6 | 7 | | 14 | 30 9 7 | 6 8 | 14 | 27 3 10 | 9 5 | 14 | 37 10 6 | 10 11 | 14 | 31 | 8 6 | 12 | 5 | | 15 | 34 7 6 | 10 11 | 15 | 41 9 14 | 7 11 | 15 | 30 5 7 | 13 5 | 15 | 59 | 11 9 | 17 | 22 | | 16 | 37 5 9 | 15 8 | 16 | 51 10 11 | 10 20 | 16 | 47 15 10 | 15 7 | 16 | 55 | 19 5 | 21 | 10 | | 17 | 113 8 42 | 47 16 | 17 | 55 7 22 | 9 17 | 17 | 67 13 19 | 19 16 | 17 | 82 | 17 23 | 27 | 15 | | 18 | 28 7 9 | 4 8 | 18 | 50 16 17 | 7 10 | 18 | 28 6 8 | 13 1 | 18 | 22 | 10 8 | 4 | | | 19 | 15 0 7 | 4 4 | 19 | 19 9 7 | 2 1 | 19 | 18 8 5 | 2 3 | 19 | | | | | | 20 | 12 3 6 | 1 2 | 20 | 12 3 1 | 2 6 | 20 | 18 4 2 | 7 5 | 20 | | | | | | 21 | 16 1 5 | 6 4 | 21 | 0 0 0 | 0 0 | 21 | 5 2 1 | 0 2 | 21 | | | | | | 22 | 2 1 0 | 1 0 | 22 | 1 0 0 | 0 1 | 22 | 3 0 0 | 3 0 | 22 | | | | | | 23 | 0 0 0 | 0 0 | 23 | 2 1 0 | 1 0 | 23 | 2 0 0 | 1 1 | 23 | | | | | | | 516 Total | | | 476 Total | | | 449 Total | | | 445 To | tal | |
 | AM Peak Hour Start | 10:30 | | AM Peak Hour Start | 11:00 | | AM Peak Hour Start | 10:30 | | AM Peak Hou | ır Start | 10 | 0:45 | | | AM Peak Hour Total | 45 | | AM Peak Hour Total | 57 | | AM Peak Hour Total | 38 | | AM Peak Hou | ır Total | | 33 | | | AM Peak Hour Factor | 93.75 % | | AM Peak Hour Factor | 79.17 % | | AM Peak Hour Factor | 67.86 % | | AM Peak Hou | ır Factor | 6 | 88.75 % | | | PM Peak Hour Start | 17:00 | | PM Peak Hour Start | 17:15 | | PM Peak Hour Start | 17:00 | | PM Peak Hou | ır Start | 1 | 7:00 | | | PM Peak Hour Total | 113 | | PM Peak Hour Total | 64 | | PM Peak Hour Total | 67 | | PM Peak Hou | ır Total | | 82 | | | PM Peak Hour Factor | 60.11 % | | PM Peak Hour Factor | 72.73 % | | PM Peak Hour Factor | 88.16 % | | PM Peak Hou | ır Factor | 7 | 75.93 % | 6/22/07 @ 13:17:27 File Name: SB Ontario.xls Page 2 of 2 Site Name NB PALISADES RD Jurisdiction Study Type Volume (2-way) Location Code 9888 Direction North Date 8/26/2006 Real Time 16:58 Start Date 8/26/2006 Start Time 17:00 Sample Time 00:15 Operator Number 29 2303 Machine Number Saturday, August 26, 2006 | | (| 08-26-0 | 6 (Ch2(| (2-1)) | | | C | 8-27-06 | 6 (Ch2(2- | -1)) | | | | 08 | -28-06 (C | h2(2-1 |)) | | 0 | 8-29-06 | Ch2(2 | -1)) | | |-------|---------|---------|---------|--------|---------|----------|-----------|----------|-----------|------|---------|--------|-----|---------|------------|--------|-----------|-------|-----------|----------|-------|---------|---------| | HR | HR | | | | | HR | HR | | | | | HR | | HR | • | • | _ | HR | HR | | | | | | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | Begin | Total | 00-15 | 15-30 3 | 0-45 | 45-00 | Begi | n T | otal 0 | 00-15 15-3 | 30 30 | -45 45-00 | Begin | Total | 00-15 | 15-30 | 30-45 4 | 15-00 | | 00 | | | | | | 00 | 10 | 3 | 3 | 2 | 2 | 00 | | 8 | 3 | 2 | 2 1 | 00 | 7 | 3 | 2 | 2 | 0 | | 01 | | | | | | 01 | 5 | 2 | 1 | 1 | 1 | 01 | | 2 | 0 | 0 | 2 0 | 01 | 4 | 1 | 3 | 0 | 0 | | 02 | | | | | | 02 | 2 | 1 | 1 | 0 | 0 | 02 | | 1 | 1 | 0 | 0 0 | 02 | 2 | 2 | 0 | 0 | 0 | | 03 | | | | | | 03 | 2 | 1 | 0 | 0 | 1 | 03 | | 1 | 0 | 0 | 0 1 | 03 | 2 | 1 | 0 | 1 | 0 | | 04 | | | | | | 04 | 2 | 2 | 0 | 0 | 0 | 04 | | 3 | 2 | 0 | 0 1 | 04 | 0 | 0 | 0 | 0 | 0 | | 05 | | | | | | 05 | 3 | 2 | 0 | 1 | 0 | 05 | | 5 | 0 | 2 | 1 2 | 05 | 1 | 0 | 0 | 0 | 1 | | 06 | | | | | | 06 | 4 | 1 | 0 | 1 | 2 | 06 | | 15 | 1 | 0 | 3 11 | 06 | 12 | 1 | 1 | 5 | 5 | | 07 | | | | | | 07 | 32 | 7 | 6 | 4 | 15 | 07 | | 29 | 11 | 6 | 6 6 | 07 | 32 | 9 | 8 | 8 | 7 | | 80 | | | | | | 08 | 46 | 10 | 16 | 9 | 11 | 08 | | 60 | 15 | 15 | 14 16 | 08 | 65 | 19 | 12 | 23 | 11 | | 09 | | | | | | 09 | 50 | 10 | 14 | 14 | 12 | 09 | | 54 | 20 | 13 | 7 14 | 09 | 68 | 21 | 13 | 22 | 12 | | 10 | | | | | | 10 | 83 | 16 | 22 | 27 | 18 | 10 | | 82 | 20 | 24 | 19 19 | 10 | 97 | 18 | 28 | 15 | 36 | | 11 | | | | | | 11 | 91 | 25 | 14 | 27 | 25 | 11 | | 85 | 19 | 15 | 18 33 | 11 | 108 | 32 | 30 | 21 | 25 | | 12 | | | | | | 12 | 87 | 18 | 24 | 21 | 24 | 12 | | 86 | 21 | 24 | 24 17 | 12 | 199 | 47 | 25 | 60 | 67 | | 13 | | | | | | 13 | 117 | 32 | 33 | 25 | 27 | 13 | | 119 | 34 | 31 | 19 35 | 13 | 423 | 84 | 115 | 125 | 99 | | 14 | | | | | | 14 | 120 | 24 | 35 | 32 | 29 | 14 | | 109 | 37 | 25 | 26 21 | 14 | 304 | 78 | 41 | 66 | 119 | | 15 | | | | | | 15 | 124 | 40 | 32 | 28 | 24 | 15 | | 131 | 29 | 34 | 37 31 | 15 | 509 | 112 | 110 | 161 | 126 | | 16 | | | | | | 16 | 148 | 36 | 41 | 42 | 29 | 16 | | 212 | 42 | 73 | 45 52 | 16 | 487 | 108 | 126 | 126 | 127 | | 17 | 133 | 37 | 42 | 30 | 24 | 17 | 138 | 37 | 45 | 28 | 28 | 17 | | 181 | 43 | 46 | 48 44 | 17 | 508 | 117 | 191 | 115 | 85 | | 18 | 110 | 23 | 39 | 20 | 28 | 18 | 107 | 26 | 25 | 34 | 22 | 18 | | 108 | 28 | 28 | 26 26 | 18 | 298 | 83 | 72 | 71 | 72 | | 19 | 84 | 28 | 16 | 19 | 21 | 19 | 84 | 26 | 21 | 19 | 18 | 19 | | 64 | 17 | 19 | 12 16 | 19 | 143 | 41 | 41 | 40 | 21 | | 20 | 60 | 19 | 20 | 10 | 11 | 20 | 52 | 13 | 7 | 21 | 11 | 20 | | 55 | 26 | 9 | 5 15 | 20 | 86 | 30 | 25 | 16 | 15 | | 21 | 30 | 13 | 8 | 5 | 4 | 21 | 33 | 16 | 7 | 5 | 5 | 21 | | 21 | 8 | 5 | 5 3 | 21 | 60 | 25 | 9 | 16 | 10 | | 22 | 16 | 5 | 5 | 4 | 2 | 22 | 13 | 3 | 2 | 5 | 3 | 22 | | 15 | 4 | 2 | 3 6 | 22 | 36 | 9 | 10 | 8 | 9 | | 23 | 11 | 5 | 3 | 2 | 1 | 23 | 12 | 4 | 6 | 2 | 0 | 23 | | 13 | 3 | 4 | 4 2 | 23 | 18 | 8 | 7 | 1 | 2 | | | 444 | Total | | • | | | 1365 | Total | | | | | | 1459 T | otal | | | | 3469 | Total | | | | | | | • | | | | <u>'</u> | AM Peak | Hour St | art | | | | AM Peak I | Hour Sta | art | | 10:15 | | AM | Peak Ho | our Start | | 11:00 | | AM Peak H | lour Sta | art | | 10:45 | | | AM Peak | Hour To | tal | | | | AM Peak I | Hour To | tal | | 92 | | AM | Peak Ho | our Total | | 85 | | AM Peak F | lour Tot | al | | 119 | | | AM Peak | Hour Fa | ctor | | | | AM Peak I | Hour Fa | ctor | | 85.19 % | ,
D | AM | Peak Ho | our Factor | | 64.39 % | | AM Peak H | lour Fa | ctor | 1 | 82.64 % | | | PM Peak | Hour St | art | | 17:00 | | PM Peak I | Hour Sta | art | | 16:30 | | PM | Peak Ho | our Start | | 16:15 | | PM Peak F | lour Sta | art | 4 | 16:30 | | | PM Peak | Hour To | tal | | 133 | | PM Peak I | Hour To | tal | | 153 | | PM | Peak Ho | our Total | | 213 | | PM Peak H | lour Tot | al | | 561 | | | PM Peak | Hour Fa | ctor | | 79.17 ° | % | PM Peak I | Hour Fa | ctor | | 85.00 % | ,
D | PM | Peak Ho | our Factor | | 72.95 % | | PM Peak F | lour Fa | ctor | - | 73.43 % | Site Name NB PALISADES RD Jurisdiction Study Type Volume (2-way) Location Code 9888 Direction North Date 8/26/2006 Real Time 16:58 Start Date 8/26/2006 Start Time 17:00 00:15 Sample Time 29 Operator Number Machine Number 2303 Wednesday, August 30, 2006 | | 08-30-06 (Ch2(2 | 2-1)) | _ | C | 8-31-06 | (Ch2(2-1 |)) | | | 09-01-06 | 6 (Ch2(2-1 | 1)) | | 0 | 9-02-06 | 6 (Ch2(2 | -1)) | | |-------|---------------------|-------------|-------|-----------|-----------|----------|----------|-------|---------|----------|------------|-----------|-------|-----------|---------|----------|---------|---------| | HR | HR | | HR | HR | | | | HR | HR | | | | HR | HR | | | | | | Begin | Total 00-15 15-30 3 | 30-45 45-00 | Begin | Total | 00-15 1 | 15-30 30 | 45 45-00 | Begin | Total | 00-15 | 15-30 30 | -45 45-00 | Begin | Total | 00-15 | 15-30 | 30-45 4 | 5-00 | | 00 | 15 7 4 | 4 0 | 00 | 6 | 2 | 1 | 1 2 | 00 | 13 | 4 | 5 | 2 2 | 00 | 13 | 7 | 4 | 1 | 1 | | 01 | 4 0 2 | 1 1 | 01 | 4 | 1 | 1 | 0 2 | 01 | 16 | | 3 | 4 7 | 01 | 8 | 4 | 3 | 1 | 0 | | 02 | 42 40 1 | 1 0 | 02 | 5 | 1 | 1 | 1 2 | 02 | 5 | | 0 | 1 1 | 02 | 8 | 3 | 3 | 2 | 0 | | 03 | 5 0 5 | 0 0 | 03 | 1 | 0 | 0 | 0 1 | 03 | 2 | | 0 | 0 2 | 03 | 1 | 0 | 0 | 0 | 1 | | 04 | 8 0 1 | 4 3 | 04 | 3 | 0 | 2 | 1 0 | 04 | 3 | 2 | 1 | 0 0 | 04 | 3 | 3 | 0 | 0 | 0 | | 05 | 34 6 4 | 7 17 | 05 | 6 | 3 | 2 | 1 0 | 05 | 5 | 2 | 1 | 1 1 | 05 | 3 | 1 | 1 | 1 | 0 | | 06 | 97 8 23 | 28 38 | 06 | 14 | 3 | 3 | 2 6 | 06 | 14 | 1 | 1 | 6 6 | 06 | 11 | 2 | 2 | 4 | 3 | | 07 | 106 38 33 | 20 15 | 07 | 32 | 3 | 8 | 7 14 | 07 | 28 | | 4 | 3 16 | 07 | 17 | 1 | 6 | 5 | 5 | | 80 | 93 28 28 | 15 22 | 08 | 62 | 21 | 18 | 14 9 | 08 | 37 | 15 | 5 | 10 7 | 08 | 32 | 8 | 8 | 9 | 7 | | 09 | 92 26 22 | 17 27 | 09 | 75 | 22 | 15 | 15 23 | 09 | 81 | 17 | 13 | 26 25 | 09 | 52 | 6 | 15 | 8 | 23 | | 10 | 100 19 28 | 21 32 | 10 | 99 | 19 | 35 | 20 25 | 10 | 91 | 11 | 23 | 27 30 | 10 | 97 | 27 | 15 | 24 | 31 | | 11 | 113 23 32 | 33 25 | 11 | 138 | 36 | 28 | 29 45 | 11 | 143 | 30 | 35 | 40 38 | 11 | 146 | 44 | 42 | 22 | 38 | | 12 | 128 29 23 | 33 43 | 12 | 106 | 20 | | 25 26 | 12 | 153 | | 38 | 34 35 | 12 | 184 | 27 | 43 | 53 | 61 | | 13 | 199 35 36 | 84 44 | 13 | 143 | 25 | 38 | 39 41 | 13 | 170 | 52 | 39 | 43 36 | 13 | 267 | 56 | 55 | 95 | 61 | | 14 | 139 33 42 | 30 34 | 14 | 154 | 29 | 40 | 43 42 | 14 | 170 | | 44 | 40 42 | 14 | 175 | 43 | 38 | 50 | 44 | | 15 | 159 28 43 | 40 48 | 15 | 166 | 30 | 33 | 42 61 | 15 | 162 | 32 | 51 | 33 46 | 15 | 187 | 44 | 40 | 36 | 67 | | 16 | 177 41 51 | 46 39 | 16 | 179 | 47 | 43 | 45 44 | 16 | 203 | 44 | 53 | 52 54 | 16 | 189 | 45 | 44 | 43 | 57 | | 17 | 169 53 42 | 35 39 | 17 | 251 | 54 | 69 | 92 36 | 17 | 153 | 50 | 26 | 37 40 | 17 | 138 | 49 | 29 | 35 | 25 | | 18 | 107 33 30 | 22 22 | 18 | 153 | 29 | 52 | 31 41 | 18 | 128 | 45 | 22 | 26 35 | 18 | 164 | 48 | 37 | 48 | 31 | | 19 | 80 18 27 | 21 14 | 19 | 167 | 47 | 34 | 47 39 | 19 | 100 | 29 | 20 | 24 27 | 19 | 147 | 51 | 47 | 23 | 26 | | 20 | 56 19 10 | 11 16 | 20 | 83 | 26 | 24 | 13 20 | 20 | 91 | 21 | 28 | 20 22 | 20 | 56 | 26 | 12 | 7 | 11 | | 21 | 46 12 11 | 14 9 | 21 | 55 | 17 | 13 | 14 11 | 21 | 69 | 14 | 19 | 21 15 | 21 | 48 | 11 | 14 | 18 | 5 | | 22 | 23 12 5 | 2 4 | 22 | 40 | 14 | 14 | 8 4 | 22 | 55 | | 16 | 15 9 | 22 | 21 | 4 | 6 | 8 | 3 | | 23 | 13 0 8 | 1 4 | 23 | 20 | 5 | 5 | 5 5 | 23 | 32 | 16 | 7 | 4 5 | 23 | 17 | 4 | 4 | 4 | 5 | | | 2005 Total | | | 1962 | Total | | | | 1924 | Total | | | | 1984 | Γotal | AM Peak Hour Start | 06:30 | | AM Peak I | Hour Star | t | 11:00 | | AM Peak | Hour Sta | art | 11:00 | | AM Peak H | our Sta | art | , | 11:00 | | | AM Peak Hour Total | 137 | | AM Peak I | Hour Tota | al | 138 | | AM Peak | Hour To | tal | 143 | | AM Peak H | our To | tal | | 146 | | | AM Peak Hour Factor | 90.13 % | | AM Peak I | Hour Fact | tor | 76.67 | % | AM Peak | Hour Fa | ctor | 89.38 | % | AM Peak H | our Fa | ctor | 8 | 82.95 % | | | PM Peak Hour Start | 13:30 | ļ | PM Peak I | Hour Star | t | 16:45 | | PM Peak | Hour Sta | art | 16:15 | | PM Peak F | our Sta | art | , | 12:45 | | | PM Peak Hour Total | 203 | I | PM Peak I | Hour Tota | al | 259 | | PM Peak | Hour To | tal | 209 | | PM Peak H | our To | tal | | 267 | | | PM Peak Hour Factor | 60.42 % | 1 | PM Peak I | Hour Fact | tor | 70.38 | % | PM Peak | Hour Fa | ctor | 96.76 | % | PM Peak F | our
Fa | ctor | 7 | 70.26 % | Site Name NB PALISADES RD Jurisdiction Study Type Volume (2-way) Location Code 9888 Direction North Date 8/26/2006 Real Time 16:58 Start Date 8/26/2006 Start Time 17:00 00:15 Sample Time Operator Number 29 Machine Number 2303 Sunday, September 03, 2006 | | (| 9-03-0 | 6 (Ch2 | (2-1)) | | | C | 9-04-0 | 6 (Ch2 | (2-1)) | | |-------|-----------|---------|--------|--------|-------|-------|-----------|----------|--------|--------|---------| | HR | HR | | | | | HR | HR | | | | | | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | | 00 | 13 | 6 | 2 | 3 | 2 | 00 | 8 | 4 | 2 | 1 | 1 | | 01 | 4 | 1 | 0 | 2 | 1 | 01 | 2 | 0 | 1 | 0 | 1 | | 02 | 5 | 1 | 0 | 1 | 3 | 02 | 4 | 3 | 1 | 0 | 0 | | 03 | 4 | 1 | 1 | 1 | 1 | 03 | 2 | 0 | 0 | 1 | 1 | | 04 | 2 | 0 | 1 | 1 | 0 | 04 | 3 | 2 | 0 | 0 | 1 | | 05 | 8 | 3 | 3 | 1 | 1 | 05 | 1 | 0 | 1 | 0 | 0 | | 06 | 18 | 2 | 3 | 2 | 11 | 06 | 13 | 0 | 4 | 5 | 4 | | 07 | 18 | 3 | 4 | 3 | 8 | 07 | 29 | 10 | 4 | 6 | 9 | | 80 | 26 | 6 | 1 | 8 | 11 | 08 | 78 | 14 | 19 | 24 | 21 | | 09 | 63 | 9 | 9 | 20 | 25 | 09 | 76 | 17 | 13 | 14 | 32 | | 10 | 66 | 9 | 12 | 19 | 26 | 10 | 92 | 28 | 24 | 21 | 19 | | 11 | 131 | 27 | 31 | 28 | 45 | 11 | 74 | 17 | 15 | 20 | 22 | | 12 | 138 | 46 | 27 | 32 | 33 | 12 | 105 | 26 | 21 | 31 | 27 | | 13 | 159 | 41 | 43 | 36 | 39 | 13 | 83 | 19 | 24 | 23 | 17 | | 14 | 168 | 38 | 41 | 51 | 38 | 14 | 86 | 14 | 22 | 27 | 23 | | 15 | 137 | 35 | 28 | 34 | 40 | 15 | 25 | 25 | | | | | 16 | 142 | 46 | 29 | 26 | 41 | 16 | | | | | | | 17 | 125 | 32 | 26 | 40 | 27 | 17 | | | | | | | 18 | 124 | 26 | 31 | 33 | 34 | 18 | | | | | | | 19 | 76 | 21 | 24 | 19 | 12 | 19 | | | | | | | 20 | 46 | 17 | 9 | 10 | 10 | 20 | | | | | | | 21 | 30 | 8 | 6 | 9 | 7 | 21 | | | | | | | 22 | 17 | 10 | 1 | 4 | 2 | 22 | | | | | | | 23 | 2 | 1 | 0 | 0 | 1 | 23 | | | | | | | | 1522 | Total | | | | | 681 | Total | | | | | | | | | | | | | | | | | | | AM Peak I | Hour St | art | | 11:00 | | AM Peak I | Hour Sta | art | | 09:45 | | | AM Peak I | Hour To | tal | | 131 | | AM Peak I | Hour To | tal | | 105 | | | AM Peak I | Hour Fa | ctor | | 72.78 | % | AM Peak I | Hour Fa | ctor | | 82.03 % | | | PM Peak I | Hour St | art | | 13:45 | | PM Peak I | Hour Sta | art | | 12:00 | | | PM Peak I | Hour To | tal | | 169 | | PM Peak I | Hour To | tal | | 105 | | | | | | | | | | | | | | 82.84 % 84.68 % PM Peak Hour Factor PM Peak Hour Factor Site Name SB PALISADES RD Jurisdiction Study Type Volume (ch1) Location Code 9889 Direction South Date 8/26/2006 Real Time 16:58 Start Date 8/26/2006 Start Time 17:00 Sample Time 00:15 Operator Number 29 2303 Machine Number Saturday, August 26, 2006 | _ | | 08-26- | -06 (CI | h1) | | | (| 08-27-06 | (Ch1) | | | | 08-28-06 (Ch | n1) | _ | | 08-29-06 (C | h1) | | |-------|---------|----------|---------|-------|-------|-------|------------|-----------|----------|---------|-------|-----------|--------------|-------------|-------|-----------|-------------|-------|---------| | HR | HR | | | | | HR | HR | | | | HR | HR | | | HR | HR | | | | | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | Begin | Total 0 | 0-15 15-3 | 30 30-45 | 45-00 | Begin | Total | 00-15 15-30 | 30-45 45-00 | Begin | Total | 00-15 15-30 | 30-45 | 45-00 | | 00 | | | | | | 00 | 6 | 4 | 1 0 | 1 | 00 | 5 | 0 1 | 2 2 | 00 | 0 | 0 0 | 0 | 0 | | 01 | | | | | | 01 | 3 | 2 | 1 0 | 0 | 01 | 4 | 2 1 | 0 1 | 01 | 1 | 0 1 | 0 | 0 | | 02 | | | | | | 02 | 4 | 0 | 2 0 | 2 | 02 | 0 | 0 0 | 0 0 | 02 | 0 | 0 0 | 0 | 0 | | 03 | | | | | | 03 | 0 | 0 | 0 0 | 0 | 03 | 1 | 1 0 | 0 0 | 03 | 2 | 0 1 | 1 | 0 | | 04 | | | | | | 04 | 1 | 0 | 0 0 | 1 | 04 | 1 | 1 0 | 0 0 | 04 | 2 | 0 0 | 0 | 2 | | 05 | | | | | | 05 | 15 | 4 | 4 2 | 5 | 05 | 15 | 4 2 | 6 3 | 05 | 16 | 6 1 | 4 | 5 | | 06 | | | | | | 06 | 44 | 6 | 9 15 | 14 | 06 | 37 | 2 10 | 10 15 | 06 | 42 | 4 15 | 12 | 11 | | 07 | | | | | | 07 | 77 | 10 | 12 29 | 26 | 07 | 98 | 8 23 | 29 38 | 07 | 102 | 17 26 | 26 | 33 | | 80 | | | | | | 08 | 104 | | 27 28 | 25 | 08 | 105 | 21 22 | 25 37 | 08 | 109 | 31 22 | 31 | | | 09 | | | | | | 09 | 93 | | 14 18 | 28 | 09 | 88 | 18 28 | 21 21 | 09 | 88 | 25 20 | 26 | | | 10 | | | | | | 10 | 91 | 20 | 17 31 | 23 | 10 | 97 | 30 19 | 27 21 | 10 | 115 | 26 34 | 30 | | | 11 | | | | | | 11 | 117 | 25 | 20 33 | | 11 | 110 | 32 27 | 28 23 | 11 | 95 | 12 31 | | | | 12 | | | | | | 12 | 111 | 33 | 25 22 | | 12 | 115 | 22 32 | | 12 | 100 | 23 23 | | _ | | 13 | | | | | | 13 | 124 | 34 | 29 38 | | 13 | 103 | 26 21 | 30 26 | 13 | 107 | 32 27 | | | | 14 | | | | | | 14 | 140 | 28 | 34 44 | | 14 | 93 | 20 37 | 21 15 | 14 | 122 | 30 29 | 37 | | | 15 | | | | | | 15 | 131 | 34 | 35 32 | | 15 | 118 | 26 29 | 32 31 | 15 | 114 | 25 31 | | | | 16 | | | | | | 16 | 100 | | 19 22 | _ | 16 | 99 | 22 22 | 24 31 | 16 | 89 | 23 20 | | | | 17 | 141 | 26 | 40 | | 35 | 17 | 103 | | 32 32 | 18 | 17 | 89 | 20 21 | 25 23 | 17 | 95 | 21 34 | | | | 18 | 135 | 40 | 27 | | 29 | 18 | 91 | | 24 19 | _ | 18 | 70 | 27 13 | | 18 | 99 | 19 28 | | | | 19 | 74 | 24 | 18 | | 15 | 19 | 58 | | 18 12 | 13 | 19 | 63 | 15 18 | | 19 | 57 | 14 11 | | | | 20 | 43 | 8 | 14 | 10 | 11 | 20 | 45 | 16 | 14 8 | 7 | 20 | 37 | 11 10 | 10 6 | 20 | 43 | 16 14 | | | | 21 | 29 | 8 | 8 | | 4 | 21 | 26 | 7 | 8 8 | | 21 | 19 | 4 4 | 9 2 | 21 | 29 | 7 6 | | | | 22 | 11 | - | 0 | 2 | 4 | 22 | 10 | 3 | 2 2 | 3 | 22 | 15 | 6 3 | 6 0 | 22 | 25 | 6 6 | _ | | | 23 | 16 | 4 | 4 | 6 | 2 | 23 | 6 | 2 | 2 1 | 1 | 23 | 6 | 2 1 | 1 2 | 23 | 10 | 2 5 | 2 | 1 | | | 449 | Total | | | | | 1500 To | otal | | | | 1388 | Total | | | 1462 | Γotal | AM Peak | Hour Sta | art | | | | AM Peak Ho | ur Start | | 11:00 | | AM Peak H | Hour Start | 07:15 | | AM Peak H | lour Start | | 07:45 | | | AM Peak | Hour To | tal | | | | AM Peak Ho | ur Total | | 117 | | AM Peak H | Hour Total | 111 | | AM Peak H | lour Total | | 117 | | | AM Peak | Hour Fa | ctor | | | | AM Peak Ho | ur Factor | | 75.00 % |) | AM Peak H | Hour Factor | 73.03 % |) | AM Peak H | lour Factor | | 88.64 % | | | PM Peak | Hour Sta | art | | 17:15 | | PM Peak Ho | ur Start | | 14:30 | | PM Peak H | Hour Start | 12:15 | | PM Peak H | lour Start | | 14:00 | | | PM Peak | Hour To | tal | | 155 | | PM Peak Ho | ur Total | | 147 | | PM Peak H | Hour Total | 119 | | PM Peak H | lour Total | | 122 | | | PM Peak | Hour Fa | ctor | | 96.88 | % | PM Peak Ho | ur Factor | | 83.52 % | • | PM Peak H | Hour Factor | 87.50 % |) | PM Peak F | lour Factor | | 82.43 % | Site Name SB PALISADES RD Jurisdiction Study Type Volume (ch1) Location Code 9889 Direction South Date 8/26/2006 Real Time 16:58 Start Date 8/26/2006 Start Time 17:00 Sample Time 00:15 29 Operator Number 2303 Machine Number Wednesday, August 30, 2006 | | 08-30-06 (Ch1) | | 08-31-06 (Ch1) | | | 09-01-06 (Ch1 | 1) | | 09-02-06 (Ch1) | | |-------|------------------------------|----------|----------------------|------------|-------|---------------------|-------------|-------|----------------------|------------| | HR | HR | HR | HR | | HR | HR | | HR | HR | | | Begin | Total 00-15 15-30 30-45 45-0 | Begin | Total 00-15 15-30 30 | 0-45 45-00 | Begin | Total 00-15 15-30 3 | 30-45 45-00 | Begin | Total 00-15 15-30 30 |)-45 45-00 | | 00 | 6 3 1 2 | 00 | 8 3 3 | 1 1 | 00 | 16 4 6 | 5 1 | 00 | 12 3 4 | 5 0 | | 01 | 1 0 0 0 | 01 | 1 0 0 | 0 1 | 01 | 8 1 2 | 1 4 | 01 | 7 5 0 | 1 1 | | 02 | 1 0 0 1 | 02 | 2 0 0 | 1 1 | 02 | 3 1 1 | 0 1 | 02 | 4 2 2 | 0 0 | | 03 | 1 0 1 0 | 03 | 1 0 0 | 0 1 | 03 | 5 3 1 | 1 0 | 03 | 1 0 1 | 0 0 | | 04 | 4 0 1 1 | 04 | 1 0 1 | 0 0 | 04 | 1 0 0 | 0 1 | 04 | 1 0 0 | 1 0 | | 05 | 19 4 1 5 | 05 | 16 4 1 | 2 9 | 05 | 11 1 2 | 4 4 | 05 | 5 1 1 | 0 3 | | 06 | 37 3 8 11 1 | 06 | 37 3 10 | 13 11 | 06 | 7 0 2 | 3 2 | 06 | 15 1 2 | 5 7 | | 07 | 111 15 22 32 4 | 07 | 88 9 17 | 29 33 | 07 | 45 10 9 | 16 10 | 07 | 27 4 6 | 4 13 | | 08 | 103 27 22 23 3 | 08 | 124 34 22 | 27 41 | 08 | 90 16 26 | 29 19 | 80 | 60 13 22 | 7 18 | | 09 | 107 25 29 25 2 | 09 | 101 29 19 | 27 26 | 09 | 112 34 28 | 21 29 | 09 | 111 21 22 | 21 47 | | 10 | 111 22 25 32 3 | 10 | 120 26 21 | 35 38 | 10 | 121 31 23 | 30 37 | 10 | 124 33 22 | 35 34 | | 11 | 91 17 19 30 2 | 11 | 99 27 25 | 23 24 | 11 | 170 40 47 | 40 43 | 11 | 179 33 33 | 56 57 | | 12 | 144 36 33 37 3 | 12 | 122 32 37 | 23 30 | 12 | 178 37 53 | 40 48 | 12 | 196 50 48 | 56 42 | | 13 | 122 30 40 23 2 | 13 | 118 28 25 | 32 33 | 13 | 213 70 51 | 42 50 | 13 | 189 36 55 | 50 48 | | 14 | 110 34 31 22 2 | 14 | 144 36 42 | 33 33 | 14 | 170 51 34 | 41 44 | 14 | 276 74 55 | 71 76 | | 15 | 131 36 35 35 2 | 15 | 131 29 26 | 35 41 | 15 | 174 48 45 | 39 42 | 15 | 234 70 56 | 56 52 | | 16 | 97 18 18 30 3 | 16 | 134 37 33 | 25 39 | 16 | 141 42 24 | 40 35 | 16 | 170 43 46 | 32 49 | | 17 | 102 29 23 30 2 | 17 | 116 31 23 | 37 25 | 17 | 117 30 35 | 26 26 | 17 | 135 32 35 | 30 38 | | 18 | 86 23 21 21 2 | 18 | 128 19 33 | 43 33 | 18 | 109 28 29 | 21 31 | 18 | 124 32 30 | 33 29 | | 19 | 63 15 18 16 1 | 19 | 94 25 25 | 23 21 | 19 | 95 20 30 | 21 24 | 19 | 100 17 33 | 25 25 | | 20 | 37 13 7 8 | 20 | 57 12 22 | 13 10 | 20 | 59 15 17 | 13 14 | 20 | 64 19 13 | 25 7 | | 21 | 25 8 4 12 | 21 | 41 10 12 | 9 10 | 21 | 50 22 8 | 7 13 | 21 | 59 16 8 | 15 20 | | 22 | 26 5 5 7 | 22 | 38 12 9 | 7 10 | 22 | 46 19 6 | 13 8 | 22 | 22 4 5 | 8 5 | | 23 | 10 0 6 3 | 23 | 14 5 2 | 4 3 | 23 | 26 11 5 | 3 7 | 23 | 14 3 4 | 5 2 | | | 1545 Total | | 1735 Total | | | 1967 Total | | | 2129 Total | AM Peak Hour Start 07:1 | i | AM Peak Hour Start | 10:30 | | AM Peak Hour Start | 11:00 | | AM Peak Hour Start | 11:00 | | | AM Peak Hour Total 12 | ; | AM Peak Hour Total | 125 | | AM Peak Hour Total | 170 | | AM Peak Hour Total | 179 | | | AM Peak Hour Factor 73.2 | % | AM Peak Hour Factor | 82.24 % | | AM Peak Hour Factor | 90.43 % | | AM Peak Hour Factor | 78.51 % | | | PM Peak Hour Start 12:3 |) | PM Peak Hour Start | 15:30 | | PM
Peak Hour Start | 13:00 | | PM Peak Hour Start | 14:00 | | | PM Peak Hour Total 14 | i | PM Peak Hour Total | 146 | | PM Peak Hour Total | 213 | | PM Peak Hour Total | 276 | | | PM Peak Hour Factor 90.6 | % | PM Peak Hour Factor | 89.02 % | | PM Peak Hour Factor | 76.07 % | | PM Peak Hour Factor | 90.79 % | Site Name SB PALISADES RD Jurisdiction Study Type Volume (ch1) Location Code 9889 South Direction Date 8/26/2006 Real Time 16:58 Start Date 8/26/2006 Start Time 17:00 00:15 Sample Time Operator Number 29 Machine Number 2303 Sunday, September 03, 2006 | | | 09-03 | -06 (Cł | ո1) | | | | 09-04 | -06 (CI | า1) | | |-------|----------------------------|----------|---------|-------|----------|-------|-----------|---------|---------|-------|-------| | HR | HR | | | | <u>.</u> | HR | HR | | | | | | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | | 00 | 11 | 5 | 3 | 2 | 1 | 00 | 3 | 1 | 0 | 1 | 1 | | 01 | 4 | 2 | 0 | 1 | 1 | 01 | 1 | 0 | 1 | 0 | 0 | | 02 | 4 | 0 | 3 | 1 | 0 | 02 | 2 | 0 | 0 | 1 | 1 | | 03 | 3 | 0 | 1 | 1 | 1 | 03 | 3 | 1 | 1 | 1 | 0 | | 04 | 2 | 0 | 0 | 0 | 2 | 04 | 2 | 0 | 0 | 0 | 2 | | 05 | 16 | 3 | 6 | 5 | 2 | 05 | 19 | 6 | 2 | 5 | 6 | | 06 | 17 | 1 | 4 | 7 | 5 | 06 | 37 | 5 | 4 | 12 | 16 | | 07 | 32 | 7 | 9 | 9 | 7 | 07 | 98 | 9 | 21 | 34 | 34 | | 80 | 68 | 14 | 16 | 23 | 15 | 08 | 137 | 38 | 38 | 23 | 38 | | 09 | 106 | 19 | 33 | 25 | 29 | 09 | 88 | 20 | 15 | 19 | 34 | | 10 | 123 | 27 | 37 | 23 | 36 | 10 | 74 | 19 | 14 | 21 | 20 | | 11 | 169 | 36 | 46 | 40 | 47 | 11 | 71 | 7 | 25 | 17 | 22 | | 12 | 189 | 49 | 49 | 49 | 42 | 12 | 103 | 21 | 27 | 31 | 24 | | 13 | 169 36
189 49
172 29 | | 56 | 36 | 51 | 13 | 72 | 4 | 21 | 29 | 18 | | 14 | 169 36
189 49 | | 44 | 42 | 46 | 14 | 84 | 17 | 26 | 24 | 17 | | 15 | 164 | 33 | 42 | 43 | 46 | 15 | 21 | 21 | | | | | 16 | 111 | 31 | 29 | 25 | 26 | 16 | | | | | | | 17 | 139 | 30 | 35 | 40 | 34 | 17 | | | | | | | 18 | 65 | 11 | 16 | 20 | 18 | 18 | | | | | | | 19 | 75 | 23 | 15 | 21 | 16 | 19 | | | | | | | 20 | 46 | 9 | 14 | 15 | 8 | 20 | | | | | | | 21 | 24 | 6 | 8 | 5 | 5 | 21 | | | | | | | 22 | 19 | 6 | 3 | 3 | 7 | 22 | | | | | | | 23 | 5 | 3 | 1 | 1 | 0 | 23 | | | | | | | | 1728 Total | | | | | | 815 | Total | | | | | | | | | | | | | | | | | | | AM Peak I | Hour Sta | art | | 11:00 | | AM Peak I | Hour St | art | | 07:30 | | | AM Peak I | Hour To | tal | | 169 | | AM Peak I | Hour To | tal | | 144 | | | AM Peak I | Hour Fa | ctor | | 89.89 | % | AM Peak I | Hour Fa | ctor | | 94.74 | 12:00 189 96.43 % PM Peak Hour Start PM Peak Hour Total PM Peak Hour Factor % 12:00 103 83.06 % PM Peak Hour Start PM Peak Hour Total PM Peak Hour Factor Site Name EB SAN LUIS ST Jurisdiction Study Type Volume (2-way) Location Code 9885 East Direction Date 8/26/2006 Real Time 15:47 Start Date 8/26/2006 Start Time 16:00 00:15 Sample Time 29 Operator Number Machine Number 711 Saturday, August 26, 2006 | _ | | 08-26-06 | (Ch2 | (2-1)) | | 08-27-06 (0 | Ch2(2-1)) | | 08-28-0 | 06 (Ch2(2-1)) | _ | 08-29-06 (Ch2 | (2-1)) | |-------|---------|----------|-------|-------------|-------|---------------------|-----------------|-------|-----------------|-------------------|-------|---------------------|-------------| | HR | HR | | | | HR | HR | | HR | HR | | HR | HR | | | Begin | Total | 00-15 | 15-30 | 30-45 45-00 | Begin | Total 00-15 15 | -30 30-45 45-00 | Begin | Total 00-15 | 15-30 30-45 45-00 | Begin | Total 00-15 15-30 | 30-45 45-00 | | 00 | | | | | 00 | 4 0 | 2 0 2 | 00 | 2 1 | 0 1 0 | 00 | 5 2 3 | 0 0 | | 01 | | | | | 01 | 0 0 | 0 0 0 | 01 | 1 0 | 1 0 0 | 01 | 0 0 0 | 0 0 | | 02 | | | | | 02 | 5 2 | 0 1 2 | 02 | 2 2 | 0 0 0 | 02 | 0 0 0 | 0 0 | | 03 | | | | | 03 | 0 0 | 0 0 0 | 03 | 3 1 | 0 1 1 | 03 | 1 1 0 | 0 0 | | 04 | | | | | 04 | 2 0 | 0 0 2 | 04 | 1 0 | 0 0 1 | 04 | 0 0 0 | 0 0 | | 05 | | | | | 05 | 4 1 | 0 2 1 | 05 | 4 0 | 1 1 2 | 05 | 3 0 1 | 1 1 | | 06 | | | | | 06 | 31 4 | 9 4 14 | 06 | 18 4 | 5 5 4 | 06 | 20 1 3 | 1 | | 07 | | | | | 07 | 31 6 | 6 8 11 | 07 | 49 6 | 15 12 16 | 07 | 51 7 14 | | | 80 | | | | | 08 | 45 9 | 8 12 16 | 08 | 39 13 | 5 9 12 | 08 | 40 13 6 | 12 9 | | 09 | | | | | 09 | 32 5 | 9 5 13 | 09 | 36 2 | 12 6 16 | 09 | 41 7 11 | | | 10 | | | | | 10 | 52 13 | 11 13 15 | 10 | 32 7 | | 10 | 32 11 3 | 8 10 8 | | 11 | | | | | 11 | 49 12 | 11 13 13 | 11 | 44 10 | | 11 | 65 17 6 | 23 19 | | 12 | | | | | 12 | 66 16 | 8 24 18 | 12 | 74 21 | | 12 | 54 15 7 | | | 13 | | | | | 13 | 64 12 | 22 16 14 | 13 | 57 15 | | 13 | 43 13 14 | | | 14 | | | | | 14 | 69 14 | 15 25 15 | 14 | 60 10 | | 14 | 69 19 18 | | | 15 | | | | | 15 | 72 15 | 23 14 20 | 15 | 66 23 | | 15 | 78 15 24 | | | 16 | 98 | 27 | 31 | 22 18 | 16 | 63 14 | 15 15 19 | 16 | 71 17 | | 16 | 69 13 18 | | | 17 | 107 | | 29 | 32 23 | 17 | 54 12 | 16 15 11 | 17 | 55 15 | | 17 | 47 13 15 | | | 18 | 65 | 13 | 20 | 17 15 | 18 | 49 12 | 6 11 20 | 18 | 51 9 | | 18 | 51 16 11 | | | 19 | 65 | 20 | 20 | 14 11 | 19 | 44 8 | 10 20 6 | 19 | 47 15 | 14 17 1 | 19 | 34 12 5 | | | 20 | 44 | 11 | 10 | 11 12 | 20 | 20 11 | 4 1 4 | 20 | 16 4 | | 20 | 18 7 3 | | | 21 | 39 | 12 | 9 | 11 7 | 21 | 10 3 | 3 4 0 | 21 | 18 6 | 5 3 5 4 | 21 | 24 9 2 | | | 22 | 23 | 4 | 11 | 5 3 | 22 | 9 4 | 3 2 0 | 22 | 12 3 | 3 4 2 | 22 | 15 4 9 | | | 23 | 6 | 3 | 1 | 0 2 | 23 | 3 0 | 3 0 0 | 23 | 2 1 | 0 0 1 | 23 | 6 2 3 | 1 0 | | | 447 | Total | | | | 778 Total | | | 760 Total | | | 766 Total | AM Peak | Hour Sta | art | | | AM Peak Hour Start | 10:00 | | AM Peak Hour S | tart 07:15 | | AM Peak Hour Start | 11:00 | | | AM Peak | Hour Tot | tal | | | AM Peak Hour Total | 52 | | AM Peak Hour To | otal 56 | | AM Peak Hour Total | 65 | | | AM Peak | Hour Fa | ctor | | | AM Peak Hour Factor | r 86.67 9 | % | AM Peak Hour F | actor 87.50 % | | AM Peak Hour Factor | 70.65 % | | | PM Peak | Hour Sta | art | 17:00 | | PM Peak Hour Start | 14:30 | | PM Peak Hour S | tart 14:30 | | PM Peak Hour Start | 14:45 | | | PM Peak | Hour Tot | tal | 107 | | PM Peak Hour Total | 78 | | PM Peak Hour To | otal 83 | | PM Peak Hour Total | 78 | | | PM Peak | Hour Fac | ctor | 83.59 | % | PM Peak Hour Factor | r 78.00 9 | % | PM Peak Hour F | actor 90.22 % | | PM Peak Hour Factor | 81.25 % | Site Name EB SAN LUIS ST Jurisdiction Study Type Volume (2-way) Location Code 9885 East Direction Date 8/26/2006 Real Time 15:47 Start Date 8/26/2006 Start Time 16:00 00:15 Sample Time Operator Number 29 Machine Number 711 Wednesday, August 30, 2006 | | 08-30-06 (Ch2(2-1)) | | 08-31-06 (Ch2(2 | -1)) | _ | 09-01-06 (Ch2(2-1 |)) | | 09-02-06 (Ch2(2- | 1)) | |-------|---------------------------|--------------|---------------------|-------------|-------|-----------------------|-----------|-------|----------------------|------------| | HR | HR | HR | HR | <u></u> | HR | HR | <u></u> | HR | HR | | | Begin | Total 00-15 15-30 30-45 4 | 5-00 Begin | Total 00-15 15-30 3 | 80-45 45-00 | Begin | Total 00-15 15-30 30- | -45 45-00 | Begin | Total 00-15 15-30 30 |)-45 45-00 | | 00 | 2 0 0 0 | 2 00 | 4 4 0 | 0 0 | 00 | 4 1 1 | 1 1 | 00 | 4 0 1 | 2 1 | | 01 | 0 0 0 0 | 0 01 | 1 1 0 | 0 0 | 01 | 13 3 2 | 4 4 | 01 | 8 4 1 | 3 0 | | 02 | 3 0 3 0 | 0 02 | 5 0 2 | 0 3 | 02 | 2 1 1 | 0 0 | 02 | 1 0 0 | 1 0 | | 03 | 0 0 0 0 | 0 03 | 0 0 0 | 0 0 | 03 | 5 0 3 | 0 2 | 03 | 2 0 1 | 1 0 | | 04 | 1 1 0 0 | 0 04 | 1 0 0 | 0 1 | 04 | 1 1 0 | 0 0 | 04 | 2 0 0 | 0 2 | | 05 | 4 0 0 2 | 2 05 | 3 0 0 | 1 2 | 05 | 8 1 2 | 4 1 | 05 | 2 0 1 | 0 1 | | 06 | 17 0 5 7 | <u>5</u> 06 | 28 5 1 | 9 13 | 06 | 11 0 3 | 3 5 | 06 | 4 0 2 | 0 2 | | 07 | 48 7 16 12 | 13 07 | 43 9 9 | 7 18 | 07 | 28 9 4 | 7 8 | 07 | 20 3 6 | 5 6 | | 08 | 29 7 10 6 | <u>6</u> 08 | 39 7 8 | 13 11 | 80 | 25 3 5 | 12 5 | 80 | 23 8 6 | 5 4 | | 09 | 34 8 8 5 | 13 09 | 42 11 12 | 8 11 | 09 | 37 9 8 | 8 12 | 09 | 34 8 6 | 10 10 | | 10 | 42 9 14 8 | 11 10 | 33 10 6 | 8 9 | 10 | 56 18 8 | 11 19 | 10 | 59 8 21 | 18 12 | | 11 | 49 13 10 15 | 11 11 | 57 9 14 | 11 23 | 11 | 71 14 11 | 14 32 | 11 | 63 12 18 | 9 24 | | 12 | 54 17 19 2 | 16 12 | 67 14 19 | 12 22 | 12 | | 29 14 | 12 | 55 18 14 | 14 9 | | 13 | 61 12 15 16 | 18 13 | 76 18 17 | 23 18 | 13 | | 11 18 | 13 | 84 23 17 | 18 26 | | 14 | 57 18 16 11 | 12 14 | 57 14 13 | 16 14 | 14 | 80 15 20 | 23 22 | 14 | 107 27 20 | 41 19 | | 15 | 78 18 27 18 | 15 15 | 83 8 28 | 28 19 | 15 | | 23 33 | 15 | 138 32 39 | 34 33 | | 16 | 64 9 19 19 | 17 16 | 45 6 12 | 7 20 | 16 | 69 22 18 | 19 10 | 16 | 123 33 28 | 28 34 | | 17 | 47 14 12 14 | 7 17 | 71 15 21 | 12 23 | 17 | 72 18 21 | 14 19 | 17 | 85 30 21 | 19 15 | | 18 | 70 26 11 21 | 12 18 | 83 19 12 | 21 31 | 18 | 56 16 12 | 15 13 | 18 | 95 21 25 | 26 23 | | 19 | 57 15 21 11 | 10 19 | 106 17 28 | 30 31 | 19 | 63 16 22 | 19 6 | 19 | 74 33 18 | 15 8 | | 20 | 24 5 3 11 | 5 20 | 63 21 11 | 15 16 | 20 | 36 10 11 | 6 9 | 20 | 39 15 12 | 7 5 | | 21 | 17 4 3 5 | 5 21 | 34 17 7 | 2 8 | 21 | 33 14 10 | 8 1 | 21 | 15 6 3 | 5 1 | | 22 | 10 2 2 3 | 3 22 | 44 19 10 | 0 15 | 22 | 26 3 10 | 4 9 | 22 | 23 6 7 | 5 5 | | 23 | 8 2 2 1 | 3 23 | 20 4 4 | 4 8 | 23 | 12 1 1 | 10 0 | 23 | 20 13 5 | 1 1 | | | 776 Total | | 1005 Total | | | 949 Total | | | 1080 Total | 0:45 | AM Peak Hour Start | 11:00 | | AM Peak Hour Start | 11:00 | | AM Peak Hour Start | 10:15 | | | AM Peak Hour Total | 49 | AM Peak Hour Total | 57 | | AM Peak Hour Total | 71 | | AM Peak Hour Total | 63 | | | | 1.67 % | AM Peak Hour Factor | 61.96 % | | AM Peak Hour Factor | 55.47 % | | AM Peak Hour Factor | 75.00 % | | | | 5:00 | PM Peak Hour Start | 19:15 | | PM Peak Hour Start | 15:15 | | PM Peak Hour Start | 15:15 | | | PM Peak Hour Total | 78 | PM Peak Hour Total | 110 | | PM Peak Hour Total | 98 | | PM Peak Hour Total | 139 | | | PM Peak Hour Factor 7 | 2.22 % | PM Peak Hour Factor | 88.71 % | | PM Peak Hour Factor | 74.24 % | | PM Peak Hour Factor | 89.10 % | Site Name EB SAN LUIS ST Jurisdiction Study Type Volume (2-way) Location Code 9885
East Direction Date 8/26/2006 Real Time 15:47 Start Date 8/26/2006 Start Time 16:00 00:15 Sample Time Operator Number 29 Machine Number 711 Sunday, September 03, 2006 | | (| 9-03-06 | 6 (Ch2 | (2-1)) | | | 09-04-06 (Ch2(2-1)) | | | | | | | |-------|-----------|----------|--------|--------|-------|-------|---------------------|---------|-------|-------|---------|--|--| | HR | HR | | | | | HR | HR | | | | | | | | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | | | | 00 | 9 | 0 | 5 | 2 | 2 | 00 | 3 | 0 | 2 | 0 | 1 | | | | 01 | 3 | 0 | 2 | 1 | 0 | 01 | 2 | 2 | 0 | 0 | 0 | | | | 02 | 5 | 1 | 3 | 1 | 0 | 02 | 0 | 0 | 0 | 0 | 0 | | | | 03 | 2 | 0 | 2 | 0 | 0 | 03 | 0 | 0 | 0 | 0 | 0 | | | | 04 | 4 | 2 | 1 | 0 | 1 | 04 | 4 | 0 | 2 | 0 | 2 | | | | 05 | 2 | 0 | 0 | 1 | 1 | 05 | 4 | 0 | 1 | 2 | 1 | | | | 06 | 9 | 1 | 1 | 3 | 4 | 06 | 23 | 6 | 5 | 5 | 7 | | | | 07 | 11 | 1 | 4 | 3 | 3 | 07 | 39 | 9 | 13 | 7 | 10 | | | | 80 | 14 | 5 | 3 | 4 | 2 | 08 | 45 | 16 | 10 | 4 | 15 | | | | 09 | 34 | 5 | 8 | 11 | 10 | 09 | 20 | 6 | 6 | 6 | 2 | | | | 10 | 46 | 15 | 11 | 16 | 4 | 10 | 26 | 5 | 8 | 4 | 9 | | | | 11 | 72 | 22 | 15 | 16 | 19 | 11 | 35 | 10 | 7 | 4 | 14 | | | | 12 | 88 | 18 | 30 | 16 | 24 | 12 | 39 | 12 | 7 | 9 | 11 | | | | 13 | 79 | 12 | 16 | 21 | 30 | 13 | | | | | | | | | 14 | 84 | 16 | 19 | 23 | 26 | 14 | | | | | | | | | 15 | 99 | 99 20 14 | | 37 | 28 | 15 | | | | | | | | | 16 | 98 | 28 | 25 | 23 | 22 | 16 | | | | | | | | | 17 | 65 | 21 | 25 | 13 | 6 | 17 | | | | | | | | | 18 | 57 | 20 | 16 | 13 | 8 | 18 | | | | | | | | | 19 | 41 | 10 | 14 | 11 | 6 | 19 | | | | | | | | | 20 | 29 | 9 | 12 | 4 | 4 | 20 | | | | | | | | | 21 | 25 | 5 | 5 | 9 | 6 | 21 | | | | | | | | | 22 | 13 | 7 | 2 | 2 | 2 | 22 | | | | | | | | | 23 | 4 | 1 | 1 | 1 | 1 | 23 | | | | | | | | | | 893 | Total | | | | | 240 | Total | AM Peak I | | | | 11:00 | | AM Peak | | | | 07:15 | | | | | AM Peak I | | | | 72 | 01 | AM Peak | | | | 46 | | | | | AM Peak I | | | | 81.82 | % | AM Peak | | | | 71.88 % | | | | | PM Peak I | | | | 15:30 | | PM Peak | | | | 12:00 | | | | | PM Peak I | | | | 118 | | PM Peak | | 39 | | | | | | | PM Peak I | Hour Fa | ctor | | 79.73 | % | PM Peak | 81.25 % | | | | | | Site Name WB SAN LUIS ST Jurisdiction Study Type Volume (ch1) Location Code 9884 Direction West Date 8/26/2006 Real Time 15:47 Start Date 8/26/2006 Start Time 16:00 Sample Time 00:15 Operator Number 29 711 Machine Number Saturday, August 26, 2006 | 08-26-06 (Ch1) | | | | | 08-27-06 (Ch1) | | | | | 08-28-06 (Ch1) | | | | | 08-29-06 (Ch1) | | | | | | | | |----------------|-----------|----------|-------|---------|----------------|-------|-----------|----------|----------|----------------|---------|-------|---------|-----------|----------------|-----------|-------|-----------|----------|---------|---------|--------| | HR | HR HR | | | HR | HR | | | | | HR | HR | | | | HR | HR | | | | | | | | Begin | Total | 00-15 | 15-30 | 30-45 4 | 15-00 | Begin | Total | 00-15 | 15-30 30 | 0-45 | 45-00 | Begin | Total | 00-15 1 | 5-30 30 | -45 45-00 | Begin | Total (| 00-15 | 15-30 3 | 0-45 45 | -00 | | 00 | | | | | | 00 | 2 | 1 | 1 | 0 | 0 | 00 | 2 | 0 | 0 | 1 1 | 00 | 3 | 0 | 1 | 2 | 0 | | 01 | | | | | | 01 | 0 | 0 | 0 | 0 | 0 | 01 | 4 | 1 | 2 | 0 1 | 01 | 1 | 0 | 1 | 0 | 0 | | 02 | | | | | | 02 | 1 | 0 | 0 | 1 | 0 | 02 | 1 | 0 | 1 | 0 0 | 02 | 2 | 1 | 0 | 0 | 1 | | 03 | | | | | | 03 | 0 | 0 | 0 | 0 | 0 | 03 | 0 | 0 | 0 | 0 0 | 03 | 1 | 1 | 0 | 0 | 0 | | 04 | | | | | | 04 | 1 | 1 | 0 | 0 | 0 | 04 | 5 | 2 | 2 | 0 1 | 04 | 4 | 2 | 2 | 0 | 0 | | 05 | | | | | | 05 | 5 | 0 | 1 | 1 | 3 | 05 | 6 | 0 | 1 | 2 3 | 05 | 7 | 1 | 2 | 2 | 2 | | 06 | | | | | | 06 | 16 | 2 | 3 | 5 | 6 | 06 | 18 | 0 | 6 | 3 9 | 06 | 27 | 3 | 2 | 12 | 10 | | 07 | | | | | | 07 | 27 | 6 | 8 | 2 | 11 | 07 | 29 | | 4 | 7 13 | 07 | 42 | 8 | 13 | 8 | 13 | | 80 | | | | | | 08 | 27 | 3 | 5 | 13 | 6 | 08 | 29 | 7 | 9 | 7 6 | 80 | 41 | 5 | 11 | 11 | 14 | | 09 | | | | | | 09 | 35 | 8 | 6 | 10 | 11 | 09 | 26 | | 5 | 5 8 | 09 | 31 | 8 | 7 | 5 | 11 | | 10 | | | | | | 10 | 30 | 5 | 7 | 8 | 10 | 10 | 22 | 3 | 6 | 4 9 | 10 | 46 | 12 | 10 | 13 | 11 | | 11 | | | | | | 11 | 50 | 16 | 8 | 11 | 15 | 11 | 49 | 12 | 11 | 13 13 | 11 | 59 | 9 | 13 | 18 | 19 | | 12 | | | | | | 12 | 54 | 16 | 14 | 10 | 14 | 12 | 48 | 14 | 13 | 13 8 | 12 | 45 | 8 | 8 | 16 | 13 | | 13 | | | | | | 13 | 56 | 10 | 18 | 12 | 16 | 13 | 38 | 10 | 7 | 13 8 | 13 | 66 | 24 | 16 | 17 | 9 | | 14 | | | | | | 14 | 54 | 11 | 10 | 14 | 19 | 14 | 39 | 9 | 9 | 15 6 | 14 | 62 | 17 | 12 | 19 | 14 | | 15 | | | | | | 15 | 38 | 9 | 10 | 11 | 8 | 15 | 38 | 11 | 7 | 11 9 | 15 | 63 | 14 | 24 | 15 | 10 | | 16 | 52 | 13 | 17 | 13 | 9 | 16 | 48 | 11 | 11 | 13 | 13 | 16 | 40 | 15 | 10 | 10 5 | 16 | 40 | 11 | 10 | 4 | 15 | | 17 | 46 | 9 | 8 | 16 | 13 | 17 | 37 | 8 | 6 | 13 | 10 | 17 | 47 | 17 | 7 | 12 11 | 17 | 39 | 11 | 9 | 12 | 7 | | 18 | 50 | 11 | 18 | 6 | 15 | 18 | 34 | 8 | 8 | 7 | 11 | 18 | 32 | 10 | 8 | 9 5 | 18 | 35 | 12 | 8 | 8 | 7 | | 19 | 29 | 12 | 6 | 6 | 5 | 19 | 25 | 6 | 9 | 4 | 6 | 19 | 30 | 5 | 13 | 6 6 | 19 | 39 | 11 | 7 | 13 | 8 | | 20 | 29 | 5 | 8 | 6 | 10 | 20 | 15 | 3 | 4 | 5 | 3 | 20 | 20 | 6 | 4 | 9 1 | 20 | 19 | 6 | 3 | 3 | 7 | | 21 | 15 | 4 | 4 | 5 | 2 | 21 | 15 | 3 | 7 | 4 | 1 | 21 | 20 | 5 | 4 | 8 3 | 21 | 13 | 1 | 3 | 3 | 6 | | 22 | 14 | 6 | 5 | 0 | 3 | 22 | 7 | 3 | 3 | 1 | 0 | 22 | 5 | 2 | 2 | 1 0 | 22 | 12 | 3 | 4 | 2 | 3 | | 23 | 3 | 1 | 1 | 1 | 0 | 23 | 8 | 3 | 3 | 0 | 2 | 23 | 14 | 5 | 5 | 3 1 | 23 | 5 | 2 | 2 | 1 | 0 | | • | 238 | Total | • | | | | 585 | Total | ' | | | | 562 | Total | | | | 702 T | otal | | | | | | | | | | | | | | | | | | | _ | AM Peak I | Hour Sta | art | | | | AM Peak I | Hour Sta | art | | 11:00 | | AM Peak | Hour Star | t | 11:00 | | AM Peak H | our Sta | rt | 11 | 1:00 | | | AM Peak I | Hour Tot | tal | | | | AM Peak I | Hour To | tal | | 50 | | AM Peak | Hour Tota | al | 49 | | AM Peak H | our Tota | al | | 59 | | | AM Peak I | Hour Fac | ctor | | | | AM Peak I | Hour Fa | ctor | | 78.13 % | , | AM Peak | Hour Fact | tor | 94.23 % | | AM Peak H | our Fac | tor | 77 | 7.63 % | | | PM Peak I | Hour Sta | art | | 17:30 | | PM Peak I | Hour St | art | | 13:15 | | PM Peak | Hour Star | t | 12:00 | | PM Peak H | our Sta | rt | 14 | 1:30 | | | PM Peak I | Hour Tot | tal | | 58 | | PM Peak I | Hour To | tal | | 57 | | PM Peak | Hour Tota | al | 48 | | PM Peak H | our Tota | al | | 71 | | | PM Peak I | Hour Fac | ctor | 8 | 80.56 | % | PM Peak I | Hour Fa | ctor | | 79.17 % |) | PM Peak | Hour Fact | tor | 85.71 % | | PM Peak H | our Fac | tor | 73 | 3.96 % | Site Name WB SAN LUIS ST Jurisdiction Volume (ch1) Study Type Location Code 9884 West Direction Date 8/26/2006 Real Time 15:47 Start Date 8/26/2006 Start Time 16:00 00:15 Sample Time Operator Number 29 Machine Number 711 Wednesday, August 30, 2006 | HR | | 08-30-06 (0 | Ch1) | | (| 08-31-06 (Ch1 | 1) | | 0 | | 09-02-06 (Ch1) | | | | | | | |---|-------|---------------------|-------------|-------|------------|---------------|-------------|-------|-------------|-----------------|----------------|--------|------------|----------|--------|----------|-------| | 01 | HR | HR | | HR | HR | | | HR | HR | | | HR | HR | | | | _ | | 01 | Begin | Total 00-15 15-30 | 30-45 45-00 | Begin | Total 0 | 0-15 15-30 3 | 30-45 45-00 | Begin | Total 00 |)-15 15-30 30-4 | 5 45-00 | Begin | Total (| 00-15 1 | 5-30 3 | ე-45 45- | -00 | | 03 | 00 | 1 1 (| 0 0 | 00 | 3 | 1 1 | 0 1 | 00 | | 2 2 | 1 1 | 00 | 5 | 2 | 2 | 0 | 1 | | 03 | 01 | 3 1 | 1 1 0 | 01 | 3 | 1 1 | 1 0 | 01 | 5 | 1 3 | 1 0 | 01 | 4 | 0 | 2 | 1 | 1 | | 04 | 02 | 1 0 (| 0 0 1 | 02 | 1 | 0 1 | 0 0 | 02 | 3 | 2 1 | 0 0 | 02 | 6 | 4 | 1 | 1 | 0 | | 06 | 03 | 0 0 0 | 0 0 | 03 | 0 | 0 0 | 0 0 | 03 | 3 | 0 1 | 0 2 | 03 | 1 | 0 | 1 | 0 | 0 | | 06 | 04 | 3 1 | 1 1 0
 04 | 5 | 3 0 | 0 2 | 04 | 1 | 1 0 | 0 0 | 04 | 3 | 1 | 1 | 0 | 1 | | 07 | 05 | 2 0 | 1 0 1 | 05 | 4 | 0 1 | 3 0 | 05 | 2 | 0 0 | 1 1 | 05 | 2 | 0 | 0 | 0 | 2 | | 08 | 06 | 23 0 6 | 6 7 10 | 06 | 24 | 2 7 | 6 9 | 06 | 17 | 0 1 | 9 7 | 06 | 8 | 0 | 2 | 3 | 3 | | 09 | 07 | | 4 7 7 | 07 | | | 9 10 | 07 | | 4 3 | 2 7 | 07 | _ | 2 | 4 | 9 | 3 | | 10 39 9 10 14 6 10 61 17 7 16 21 10 53 10 9 16 18 10 50 8 17 13 12 11 48 9 14 14 11 11 83 19 13 24 27 11 87 16 18 26 27 12 43 5 9 10 19 12 74 20 23 16 15 12 78 25 17 16 20 12 117 25 29 20 43 13 59 15 12 21 11 13 69 21 15 14 19 13 107 25 29 26 27 13 99 3 93 26 17 22 28 14 4 42 12 9 14 7 14 63 13 16 23 11 14 117 27 24 21 45 14 82 18 21 25 18 15 38 9 12 12 5 15 54 8 12 15 19 15 80 19 18 19 24 15 129 28 57 24 20 18 10 10 16 94 17 24 30 23 16 6 60 16 16 16 12 16 74 18 16 16 24 17 55 17 13 14 11 17 117 28 31 27 31 17 49 14 12 10 13 17 54 14 11 9 20 18 33 5 9 6 13 18 90 26 18 30 16 18 68 17 16 14 21 18 55 15 13 15 12 19 19 35 8 8 7 12 19 52 21 17 5 9 19 35 10 5 14 6 19 30 8 10 6 6 20 33 9 13 7 4 12 12 27 7 3 6 6 6 21 18 4 2 2 2 29 9 12 4 4 8 21 12 2 9 3 5 1 3 1 0 9 16 18 10 10 6 6 10 10 10 10 10 10 10 10 10 10 10 10 10 | 08 | | | 08 | 38 | 12 10 | - | 80 | 29 | 5 11 | 7 6 | 08 | 32 | 6 | 11 | 6 | 9 | | 11 | 09 | | 3 9 7 | 09 | 43 | 8 10 | 15 10 | 09 | | 4 11 1 | 0 7 | 09 | | 7 | 12 | | 21 | | 12 | 10 | 39 9 10 | 0 14 6 | 10 | 61 | 17 7 | 16 21 | 10 | 53 | 10 9 1 | 6 18 | 10 | 50 | 8 | 17 | 13 | 12 | | 13 | 11 | 48 12 15 | 5 9 12 | 11 | 48 | 9 14 | 14 11 | 11 | 83 | 19 13 2 | 4 27 | 11 | 87 | 16 | 18 | 26 | 27 | | 14 | 12 | 43 5 9 | 9 10 19 | 12 | 74 | 20 23 | 16 15 | 12 | 78 | | | 12 | 117 | | 29 | 20 | 43 | | 15 | 13 | 59 15 12 | 2 21 11 | 13 | 69 | 21 15 | 14 19 | 13 | 107 | | | 13 | 93 | 26 | 17 | 22 | 28 | | 16 | 14 | 42 12 9 | 9 14 7 | 14 | 63 | 13 16 | 23 11 | 14 | 117 | 27 24 2 | 1 45 | 14 | 82 | | 21 | 25 | 18 | | 17 | 15 | 38 9 12 | 2 12 5 | 15 | 54 | | 15 19 | 15 | 80 | | | 15 | 129 | 28 | 57 | 24 | 20 | | 18 | 16 | 50 12 18 | 8 10 10 | 16 | 94 | 17 24 | | 16 | 60 | 16 16 1 | 6 12 | 16 | 74 | 18 | 16 | 16 | 24 | | 19 35 8 8 7 12 19 52 21 17 5 9 19 35 10 5 14 6 19 30 8 10 6 6 6 20 20 2 9 3 6 6 21 18 4 2 4 8 21 22 7 3 6 6 6 21 18 4 2 4 8 21 22 9 3 5 1 3 1 0 0 23 11 7 1 0 3 23 11 7 1 0 3 23 13 7 2 1 3 23 8 3 2 3 0 6 6 10 Total AM Peak Hour Start 11:00 AM Peak Hour Start 10:00 AM Peak Hour Start 11:00 AM Peak Hour Start 11:00 AM Peak Hour Start 11:00 | 17 | 55 17 13 | 3 14 11 | 17 | 117 | 28 31 | 27 31 | 17 | 49 | 14 12 1 | 0 13 | 17 | 54 | 14 | 11 | - | 20 | | 20 | 18 | 33 5 9 | 9 6 13 | 18 | 90 | 26 18 | 30 16 | 18 | 68 | 17 16 1 | 4 21 | 18 | 55 | 15 | 13 | 15 | 12 | | 21 | 19 | 35 8 8 | 8 7 12 | 19 | 52 | 21 17 | 5 9 | 19 | 35 | 10 5 1 | 4 6 | 19 | 30 | 8 | 10 | 6 | 6 | | 22 11 2 3 4 2 22 29 9 12 4 4 2 23 13 7 2 1 3 23 8 3 2 3 0 974 Total AM Peak Hour Start 11:00 AM Peak Hour Start 10:00 AM Peak Hour Start 11:00 AM Peak Hour Start 11:00 AM Peak Hour Start 11:00 | 20 | 20 2 9 | 9 3 6 | 20 | 36 | 15 12 | 1 8 | 20 | 30 | 6 8 1 | 0 6 | 20 | 33 | 9 | 13 | 7 | 4 | | 23 5 1 3 1 0 23 11 7 1 0 3 23 13 7 2 1 3 23 8 3 2 3 0 990 Total AM Peak Hour Start 11:00 AM Peak Hour Start 10:00 AM Peak Hour Start 11:00 AM Peak Hour Start 11:00 AM Peak Hour Start 11:00 | 21 | 22 7 3 | 6 6 | 21 | 18 | 4 2 | 4 8 | 21 | 22 | 9 3 | 5 5 | 21 | 31 | 5 | 4 | 9 | 13 | | 610 Total 974 Total 924 Total 990 | 22 | 11 2 3 | 3 4 2 | 22 | 29 | 9 12 | 4 4 | 22 | 15 | 4 3 | 2 6 | 22 | 10 | 2 | 4 | 3 | 1 | | AM Peak Hour Start 11:00 AM Peak Hour Start 10:00 AM Peak Hour Start 11:00 AM Peak Hour Start 11:00 | 23 | 5 1 3 | 3 1 0 | 23 | 11 | 7 1 | 0 3 | 23 | 13 | 7 2 | 1 3 | 23 | 8 | 3 | 2 | 3 | 0 | | | | 610 Total | | | 974 To | otal | | | 924 To | tal | | | 990 T | otal | | | | | | | | | _ | | | | | | | | • | AM Peak Hour Start | 11:00 | | AM Peak Ho | our Start | 10:00 | | AM Peak Hou | ur Start | 11:00 | | AM Peak Ho | our Star | t | 11 | :00 | | AM Peak Hour Total 48 AM Peak Hour Total 61 AM Peak Hour Total 83 AM Peak Hour Total 87 | | AM Peak Hour Total | 48 | | AM Peak Ho | our Total | 61 | | AM Peak Hou | ur Total | 83 | | AM Peak Ho | our Tota | al | | 87 | | AM Peak Hour Factor 80.00 % AM Peak Hour Factor 72.62 % AM Peak Hour Factor 76.85 % AM Peak Hour Factor 80.56 % | | AM Peak Hour Factor | 80.00 % | | AM Peak Ho | our Factor | 72.62 | % | AM Peak Hou | ur Factor | 76.85 % | ,
o | AM Peak Ho | our Fact | tor | 80 | .56 % | | PM Peak Hour Start 12:45 PM Peak Hour Start 17:00 PM Peak Hour Start 14:00 PM Peak Hour Start 15:00 | | PM Peak Hour Start | 12:45 | | PM Peak Ho | our Start | 17:00 | | PM Peak Hou | ur Start | 14:00 | | PM Peak Ho | our Star | t | 15 | :00 | | PM Peak Hour Total 67 PM Peak Hour Total 117 PM Peak Hour Total 117 PM Peak Hour Total 129 | | PM Peak Hour Total | 67 | | PM Peak Ho | our Total | 117 | | PM Peak Hou | ur Total | 117 | | PM Peak Ho | our Tota | al | 1 | 129 | | PM Peak Hour Factor 79.76 % PM Peak Hour Factor 94.35 % PM Peak Hour Factor 65.00 % PM Peak Hour Factor 56.58 % | | PM Peak Hour Factor | 79.76 % | | PM Peak Ho | our Factor | 94.35 | % | PM Peak Hou | ur Factor | 65.00 % | ,
D | PM Peak Ho | our Fact | tor | 56 | .58 % | Site Name WB SAN LUIS ST Jurisdiction Study Type Volume (ch1) Location Code 9884 West Direction Date 8/26/2006 Real Time 15:47 Start Date 8/26/2006 Start Time 16:00 00:15 Sample Time Operator Number 29 Machine Number 711 Sunday, September 03, 2006 | | | 09-03 | -06 (Cł | ո1) | | | | 09-04 | -06 (CI | า1) | | |-------|-----------|---------|---------|-------|-------|-------|-----------|----------|---------|-------|---------| | HR | HR | | | | | HR | HR | | | | | | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | | 00 | 5 | 3 | 0 | 1 | 1 | 00 | 2 | 1 | 1 | 0 | 0 | | 01 | 3 | 0 | 2 | 1 | 0 | 01 | 3 | 2 | 1 | 0 | 0 | | 02 | 4 | 1 | 2 | 0 | 1 | 02 | 0 | 0 | 0 | 0 | 0 | | 03 | 2 | 0 | 1 | 0 | 1 | 03 | 0 | 0 | 0 | 0 | 0 | | 04 | 2 | 1 | 1 | 0 | 0 | 04 | 3 | 1 | 2 | 0 | 0 | | 05 | 6 | 0 | 2 | 0 | 4 | 05 | 3 | 0 | 0 | 2 | 1 | | 06 | 12 | 0 | 5 | 3 | 4 | 06 | 25 | 3 | 7 | 8 | 7 | | 07 | 13 | 2 | 7 | 2 | 2 | 07 | 34 | 7 | 6 | 10 | 11 | | 80 | 36 | 6 | 10 | 6 | 14 | 08 | 44 | 11 | 13 | 7 | 13 | | 09 | 49 | 14 | 10 | 9 | 16 | 09 | 34 | 7 | 12 | 9 | 6 | | 10 | 65 | 10 | 13 | 21 | 21 | 10 | 37 | 7 | 8 | 10 | 12 | | 11 | 62 | 17 | 15 | 14 | 16 | 11 | 37 | 3 | 15 | 7 | 12 | | 12 | 94 | 19 | 28 | 23 | 24 | 12 | 75 | 10 | 20 | 24 | 21 | | 13 | 100 | 22 | 27 | 26 | 25 | 13 | | | | | | | 14 | 87 | 29 | 14 | 25 | 19 | 14 | | | | | | | 15 | 71 | 12 | 24 | 17 | 18 | 15 | | | | | | | 16 | 65 | 13 | 12 | 16 | 24 | 16 | | | | | | | 17 | 45 | 14 | 6 | 14 | 11 | 17 | | | | | | | 18 | 53 | 13 | 13 | 15 | 12 | 18 | | | | | | | 19 | 25 | 9 | 5 | 4 | 7 | 19 | | | | | | | 20 | 15 | 1 | 2 | 6 | 6 | 20 | | | | | | | 21 | 16 | 6 | 3 | 5 | 2 | 21 | | | | | | | 22 | 9 | 3 | 2 | 1 | 3 | 22 | | | | | | | 23 | 4 | 1 | 1 | 2 | 0 | 23 | | | | | | | | 843 | Total | | | | | 297 | Total | | | | | | | | | | | | | | | | | | | AM Peak I | Hour St | art | | 10:30 | | AM Peak I | Hour St | art | | 07:30 | | | AM Peak I | Hour To | tal | | 74 | | AM Peak I | Hour To | tal | | 45 | | | AM Peak I | Hour Fa | ctor | | 88.10 | % | AM Peak I | Hour Fa | ctor | | 86.54 % | | | PM Peak I | Hour St | art | | 13:15 | | PM Peak I | Hour Sta | art | | 12:00 | | | PM Peak I | Hour To | otal | | 107 | | PM Peak I | Hour To | tal | | 75 | 92.24 % PM Peak Hour Factor 78.13 % PM Peak Hour Factor Site Name NB + SB SAN LUIS BAY DR BTW HWY 101 & BLUE HERON Jurisdiction Study Type Volume (ch1) Location Code 9876 Direction None Date 8/19/2006 Real Time 11:57 Start Date 8/19/2006 Start Time 12:00 00:15 Sample Time Operator Number 29 Machine Number 601 Saturday, August 19, 2006 | | | 08-19 | -06 (Ch | ո1) | | | | 08-20- | -06 (Ch1 |) | | | | 08-21 | -06 (Ch | 1) | | | | 08-22 | -06 (Ch | 1) | | |-------|-----------|----------|---------|-------|-------|-------|-----------|----------|----------|---------|---------|-------|-----------|---------|---------|----------|-------------|-------|-----------|---------|---------|-------|---------| | HR | HR | | | | | HR | HR | | | | | HR | HR | | | | | HR | HR | | | | | | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | Begin | Total | 00-15 | 15-30 3 | 30-45 · | 45-00 | Begin | Total | 00-15 | 15-30 | 30-45 45 | -00 | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | | 00 | | | | | | 00 | 42 | 21 | 8 | 5 | 8 | 00 | 14 | 4 | 2 | 2 | 6 | 00 | 17 | 4 | 9 | 1 | 3 | | 01 | | | | | | 01 | 25 | 14 | 0 | 7 | 4 | 01 | 4 | 0 | 2 | 2 | 0 | 01 | 7 | 4 | 1 | 2 | 0 | | 02 | | | | | | 02 | 11 | 4 | 2 | 4 | 1 | 02 | 10 | 5 | 0 | 2 | 3 | 02 | 9 | 2 | 2 | 3 | 2 | | 03 | | | | | | 03 | 15 | 2 | 0 | 11 | 2 | 03 | 2 | 0 | 2 | 0 | 0 | 03 | 1 | 0 | 1 | 0 | 0 | | 04 | | | | | | 04 | 12 | 4 | 3 | 5 | 0 | 04 | 26 | 0 | 7 | 11 | 8 | 04 | 64 | 11 | 14 | 13 | 26 | | 05 | | | | | | 05 | 50 | 5 | 13 | 21 | 11 | 05 | 151 | 18 | 43 | 45 | 45 | 05 | 409 | 76 | 105 | 126 | 102 | | 06 | | | | | | 06 | 70 | 24 | 16 | 15 | 15 | 06 | 219 | 28 | 32 | 73 | 86 | 06 | 407 | 118 | 72 | 110 | 107 | | 07 | | | | | | 07 | 119 | 21 | 18 | 44 | 36 | 07 | 271 | 61 | 54 | 81 | 75 | 07 | 391 | 90 | 95 | 114 | 92 | | 80 | | | | | | 80 | 196 | 42 | 37 | 65 | 52 | 08 | 256 | 36 | 65 | 63 | 92 | 08 | 302 | 81 | 64 | 107 | 50 | | 09 | | | | | | 09 | 254 | 54 | 36 | 74 | 90 | 09 | 306 | 53 | 81 | 86 | 86 | 09 | 277 | 67 | 59 | 78 | 73 | | 10 | | | | | | 10 | 300 | 58 | 67 | 80 | 95 | 10 | 347 | 80 | 84 | 93 | 90 | 10 | 336 | 53 | 85 | 88 | 110 | | 11 | | | | | | 11 | 386 | 88 | 106 | 108 | 84 | 11 | 373 | 86 | 92 | | 113 | 11 | 451 | 100 | 96 | 117 | 138 | | 12 | 433 | 104 | 91 | 124 | 114 | 12 | 478 | 107 | 110 | 128 | 133 | 12 | 311 | 82 | 71 | 65 | 93 | 12 | 360 | 73 | 106 | 87 | 94 | | 13 | 427 | 88 | 97 | 114 | 128 | 13 | 546 | 129 | 141 | 136 | 140 | 13 | 379 | 76 | 82 | | 109 | 13 | 462 | 93 | 108 | 161 | 100 | | 14 |
399 | 109 | 95 | 110 | 85 | 14 | 484 | 141 | 112 | 136 | 95 | 14 | 339 | 75 | 85 | 84 | 95 | 14 | 425 | 109 | 121 | 101 | 94 | | 15 | 367 | 82 | 115 | 83 | 87 | 15 | 404 | 121 | 87 | 89 | 107 | 15 | 370 | 82 | 101 | 89 | 98 | 15 | 359 | 107 | 99 | 67 | 86 | | 16 | 333 | 96 | 94 | 76 | 67 | 16 | 299 | 73 | 60 | 71 | 95 | 16 | 337 | 86 | 78 | 79 | 94 | 16 | 367 | 85 | 86 | 90 | 106 | | 17 | 260 | 76 | 62 | 67 | 55 | 17 | 271 | 74 | 56 | 76 | 65 | 17 | 353 | 89 | 112 | 59 | 93 | 17 | 395 | 82 | 95 | 118 | 100 | | 18 | 299 | 59 | 74 | | 81 | 18 | 216 | 62 | 59 | 46 | 49 | 18 | 292 | 71 | 96 | 55 | 70 | 18 | 328 | 92 | 60 | 100 | 76 | | 19 | 235 | 65 | 65 | 55 | 50 | 19 | 249 | 71 | 76 | 61 | 41 | 19 | 198 | 89 | 39 | 37 | 33 | 19 | 220 | 79 | 54 | 46 | 41 | | 20 | 204 | 57 | 37 | 62 | 48 | 20 | 160 | 44 | 32 | 48 | 36 | 20 | 162 | 42 | 34 | 40 | 46 | 20 | 192 | 50 | 46 | 57 | 39 | | 21 | 220 | 67 | 42 | 73 | 38 | 21 | 103 | 23 | 33 | 28 | 19 | 21 | 111 | 26 | 34 | 30 | 21 | 21 | 129 | 28 | 36 | 45 | 20 | | 22 | 127 | 30 | 36 | 22 | 39 | 22 | 71 | 30 | 20 | 10 | 11 | 22 | 61 | 20 | 16 | 21 | 4 | 22 | 55 | 19 | 11 | 13 | 12 | | 23 | 64 | 17 | 7 | 25 | 15 | 23 | 31 | 10 | 7 | 7 | 7 | 23 | 32 | 10 | 7 | 9 | 6 | 23 | 50 | 14 | 21 | 9 | 6 | | | 3368 | Total | | | | | 4792 | Total | | | | | 4924 | Total | | | | | 6013 | Total | AM Peak I | Hour Sta | art | | | | AM Peak I | Hour Sta | art | | 10:45 | | AM Peak I | Hour St | art | 11 | :00 | | AM Peak I | Hour St | art | | 05:15 | | | AM Peak I | Hour To | tal | | | | AM Peak I | Hour To | tal | | 397 | | AM Peak I | Hour To | tal | | 373 | | AM Peak I | Hour To | tal | | 451 | | | AM Peak I | | | | | | AM Peak I | Hour Fa | ctor | | 91.90 % | | AM Peak I | Hour Fa | ctor | 82 | .52 % | | AM Peak I | Hour Fa | ctor | | 89.48 % | | | PM Peak I | Hour Sta | art | | 13:15 | | PM Peak I | Hour Sta | art | | 13:15 | | PM Peak I | Hour St | art | 13 | :30 | | PM Peak I | Hour St | art | | 13:30 | | | PM Peak I | Hour To | tal | | 448 | | PM Peak I | Hour To | tal | | 558 | | PM Peak I | Hour To | tal | | 381 | | PM Peak I | Hour To | tal | | 491 | | | PM Peak I | Hour Fa | ctor | | 87.50 | % | PM Peak I | Hour Fa | ctor | | 98.94 % | | PM Peak I | Hour Fa | ctor | 85 | .04 % | | PM Peak I | Hour Fa | ctor | | 76.24 % | Site Name NB + SB SAN LUIS BAY DR BTW HWY 101 & BLUE HERON Jurisdiction Study Type Volume (ch1) Location Code 9876 Direction None Date 8/19/2006 Real Time 11:57 Start Date 8/19/2006 Start Time 12:00 00:15 Sample Time Operator Number 29 Machine Number 601 Wednesday, August 23, 2006 | | 08-23-06 (Ch1) | 08-24-06 (Ch | ո1) | | 08-25-06 (Ch1) | | 08-26-06 (CI | h1) | |-------|-------------------------------|-------------------------|-------------|-------|-----------------------------------|---------------|---------------------|-------------| | HR | HR | HR HR | | HR | HR | HR | HR | | | Begin | Total 00-15 15-30 30-45 45-00 | Begin Total 00-15 15-30 | 30-45 45-00 | Begin | Total 00-15 15-30 30-45 | 45-00 Begin | Total 00-15 15-30 | 30-45 45-00 | | 00 | 21 8 9 2 2 | 00 6 0 2 | 0 4 | 00 | 17 6 4 6 | 1 00 | 33 13 9 | 9 2 | | 01 | 11 6 1 2 2 | 01 18 5 5 | 4 4 | 01 | 17 0 8 6 | 3 01 | 31 4 15 | 8 4 | | 02 | 5 0 3 2 0 | 02 7 2 1 | 0 4 | 02 | 1 0 0 1 | 0 02 | 17 8 5 | 2 2 | | 03 | 8 0 3 2 3 | 03 8 0 2 | 1 5 | 03 | 14 2 4 4 | 4 03 | 30 8 8 | 7 7 | | 04 | 54 7 11 15 21 | 04 68 4 16 | 7 41 | 04 | 83 17 10 24 | 32 04 | 28 5 7 | 15 1 | | 05 | 410 67 106 109 128 | 05 400 57 101 | 126 116 | 05 | 404 90 104 109 | 101 05 | 56 7 15 | 20 14 | | 06 | 356 94 94 90 78 | 06 347 81 86 | 82 98 | 06 | 369 <mark>87 89 92</mark> | 101 06 | 125 35 28 | 28 34 | | 07 | 300 72 82 73 73 | 07 388 85 99 | 123 81 | 07 | 341 81 89 81 | | 214 31 47 | 84 52 | | 80 | 263 60 59 57 87 | 08 296 70 65 | 83 78 | 08 | 266 68 52 80 | | 208 58 49 | 57 44 | | 09 | 302 77 70 78 77 | 09 357 79 94 | 79 105 | 09 | 337 <u>85</u> <u>93</u> <u>80</u> | | 329 71 88 | | | 10 | 322 <u>97 70 90 65</u> | 10 376 108 96 | 94 78 | 10 | 388 64 94 119 | | 328 56 62 | | | 11 | 441 105 114 136 86 | 11 449 110 113 | | 11 | 465 93 143 120 | 109 11 | 549 133 135 | | | 12 | 442 110 94 95 143 | 12 458 110 86 | | 12 | 462 95 142 109 | | 643 147 131 | 151 214 | | 13 | 392 120 95 92 85 | 13 455 89 118 | | 13 | 467 115 105 146 | | 703 188 222 | 153 140 | | 14 | 416 63 87 156 110 | 14 418 132 99 | | 14 | 476 119 130 128 | | 152 152 | | | 15 | 424 104 102 116 102 | 15 450 132 117 | 98 103 | 15 | 521 134 131 121 | | | | | 16 | 335 79 73 97 86 | 16 353 99 72 | | 16 | 561 142 139 151 | | | | | 17 | 341 95 104 93 49 | 17 396 98 111 | 97 90 | 17 | 565 151 153 133 | | | | | 18 | 384 90 94 92 108 | 18 312 82 97 | 67 66 | 18 | 425 116 143 93 | | | | | 19 | 219 63 59 38 59 | 19 263 69 81 | 48 65 | 19 | 338 116 74 78 | | | | | 20 | 197 61 65 46 25 | 20 231 71 49 | 68 43 | 20 | 185 50 34 47 | | | | | 21 | 154 42 45 37 30 | 21 173 47 38 | 51 37 | 21 | 186 55 45 51 | | | | | 22 | 68 26 10 19 13 | 22 89 39 20 | 24 6 | 22 | 118 48 24 27 | | | | | 23 | 42 10 11 11 10 | 23 49 19 11 | 13 6 | 23 | 66 21 20 18 | 7 23 | | | | | 5907 Total | 6367 Total | | | 7072 Total | | 3446 Total | AM Peak Hour Start 11:00 | AM Peak Hour Start | 11:00 | | AM Peak Hour Start | 10:45 | AM Peak Hour Start | 11:00 | | | AM Peak Hour Total 441 | AM Peak Hour Total | 449 | | AM Peak Hour Total | 467 | AM Peak Hour Total | 549 | | | AM Peak Hour Factor 81.07 9 | | 95.13 % | | AM Peak Hour Factor | 81.64 % | AM Peak Hour Factor | 92.74 % | | | PM Peak Hour Start 14:30 | PM Peak Hour Start | 13:15 | | PM Peak Hour Start | 16:30 | PM Peak Hour Start | 12:45 | | | PM Peak Hour Total 472 | PM Peak Hour Total | 498 | | PM Peak Hour Total | 584 | PM Peak Hour Total | 777 | | | PM Peak Hour Factor 75.64 9 | % PM Peak Hour Factor | 90.88 % | | PM Peak Hour Factor | 95.42 % | PM Peak Hour Factor | 87.50 % | NB+SB San Luis Bay Dr North of Avila Site Name Jurisdiction Study Type Volume (ch1) Location Code 9865 Direction 8/11/2006 Date Real Time 14:45 Start Date 8/11/2006 Start Time 15:00 Sample Time 00:15 Operator Number 57 Machine Number 25 NB + SB volumes - subtract SB volumes to get NB volumes Friday, August 11, 2006 Do not use data from 8/11/06 and 8/12/06 Site Name NB+SB San Luis Bay Dr North of Avila Jurisdiction Study Type Volume (ch1) Location Code 9865 Direction Date 8/11/2006 Real Time 14:45 Start Date 8/11/2006 Start Time 15:00 00:15 Sample Time Operator Number 57 Machine Number 25 Tuesday, August 15, 2006 | | 08-15-06 (Ch1) | | 08-16-06 (Ch1 |) | _ | 08-17-06 (Ch1) | | _ | 08-1 | 8-06 (Ch | 1) | | |-------|---------------------------|---------------------|---------------------|-------------|-------|------------------------|-----------------------------|-------|----------------|----------|----------|--------| | HR | HR | HR | HR | <u> </u> | HR | HR | | HR | HR | | | | | Begin | Total 00-15 15-30 30-45 4 | -00 Begin | Total 00-15 15-30 3 | 30-45 45-00 | Begin | Total 00-15 15-30 30-4 | 45-00 | Begin | Total 00-15 | 15-30 | 30-45 45 | 5-00 | | 00 | 11 5 3 2 | 1 00 | 27 10 13 | 4 0 | 00 | 28 12 11 | 4 1 | 00 | 26 13 | 3 | 5 | 5 | | 01 | 19 3 3 7 | <u>6</u> 01 | 19 1 5 | 10 3 | 01 | 18 1 1 | 9 7 | 01 | 19 1 | 7 | 9 | 2 | | 02 | 17 6 6 1 | 4 02 | 7 3 2 | 1 1 | 02 | 3 0 1 | 2 0 | 02 | 18 4 | 1 6 | 5 | 3 | | 03 | 6 4 0 1 | 1 03 | 5 1 1 | 1 2 | 03 | 7 1 1 | 1 4 | 03 | 11 6 | 3 | 1 | 1 | | 04 | 26 2 7 6 | 11 04 | 30 1 9 | 10 10 | 04 | 26 5 8 | 5 8 | 04 | 33 2 | | 12 | 12 | | 05 | 207 24 40 65 | 78 05 | 211 21 39 | 61 90 | 05 | | 63 70 | 05 | 194 26 | 37 | 56 | 75 | | 06 | 278 80 77 61 | 60 06 | 290 70 81 | 72 67 | 06 | | 65 68 | 06 | 256 62 | | 67 | 58 | | 07 | 283 72 80 52 | <mark>79</mark> 07 | 264 60 73 | 60 71 | 07 | | 58 77 | 07 | 242 62 | | 54 | 57 | | 80 | 260 64 62 61 | 73 08 | 249 55 57 | 59 78 | 08 | | 58 76 | 08 | 221 41 | | 54 | 73 | | 09 | 236 63 64 48 | <mark>61</mark> 09 | 259 61 53 | 70 75 | 09 | | 59 52 | 09 | 270 58 | | 63 | 92 | | 10 | 352 86 74 98 | <u>94</u> 10 | 289 75 62 | 95 57 | 10 | | 95 | 10 | 346 <u>91</u> | | 86 | 80 | | 11 | 418 88 122 101 | <mark>107</mark> 11 | 369 73 77 | 104 115 | 11 | | 77 98 | 11 | 383 85 | | | 119 | | 12 | 491 115 134 135 | 107 12 | 384 95 89 | 87 113 | 12 | | 15 83 | 12 | 451 107 | | | 111 | | 13 | 469 127 109 107 | 126 | 390 109 81 | 111 89 | 13 | | 22 115 | 13 | 445 122 | | | 119 | | 14 | 452 113 110 97 | 132 14 | 393 90 83 | 120 100 | 14 | | 92 100 | 14 | 450 114 | | | 104 | | 15 | 450 139 97 102 | 15 | 488 108 128 | 116 136 | 15 | | 20 128 | 15 | 487 128 | | | 116 | | 16 | 516 129 113 114 | 160 | 553 109 116 | 152 176 | 16 | | 38 154 | 16 | 433 143 | 119 | 171 | | | 17 | 645 165 207 134 | 139 17 | 578 139 200 | 133 106 | 17 | | 103 | 17 | | | | | | 18 | 314 69 82 93 | 70 18 | 309 84 89 | 64 72 | 18 | | 03 86 | 18 | | | | | | 19 | 250 73 63 63 | 51 19 | 244 65 67 | 59 53 | 19 | | 55 | 19 | | | | | | 20 | 152 54 41 31 | 26 20 | 197 75 41 | 49 32 | 20 | | 43 47 | 20 | | | | | | 21 | 137 41 27 45 | 24 21 | 123 33 33 | 28 29 | 21 | | 34 31 | 21 | | | | | | 22 | 70 17 20 17 | 16 22 | 105 30 35 | 22 18 | 22 | | 25 19 | 22 | | | | | | 23 | 58 17 13 18 | 10 23 | 58 23 15 | 10 10 | 23 | 56 23 10 | 18 5 | 23 | | | | | | | 6117 Total | | 5841 Total | | | 6020 Total | | | 4285 Total | AM Peak Hour Start | 11:00 | | AM Peak Hour Start | 10:15 | | AM Peak Hour S | | | 1:00 | | | AM Peak Hour Total | | AM Peak Hour Total | 369 | | AM Peak Hour Total | 363 | | AM Peak Hour T | | | 383 | | | AM Peak Hour Factor 8 | .66 % | AM Peak Hour Factor | 80.22 % | | AM Peak Hour Factor | 95.53 % | | AM Peak Hour F | actor | 80 | 0.46 % | | | PM Peak Hour Start 1 | | PM Peak Hour Start | 16:30 | | PM Peak Hour Start | 16:45 | | PM Peak Hour S | tart | | 5:45 | | | PM Peak Hour Total
 | PM Peak Hour Total | 667 | | PM Peak Hour Total | 637 | | PM Peak Hour T | | | 549 | | | PM Peak Hour Factor 8 | .43 % | PM Peak Hour Factor | 83.38 % | | PM Peak Hour Factor | 84.71 % | | PM Peak Hour F | actor | 80 | 0.26 % | Site Name SB San Luis Bay Dr North of Avila Jurisdiction Study Type Volume (ch1) Location Code 9866 Direction South 8/11/2006 Date Real Time 14:35 Start Date 8/11/2006 Start Time 15:00 Sample Time 00:15 Operator Number 57 Machine Number 6 Friday, August 11, 2006 Do not use data from 8/11/06 and 8/12/06 Site Name SB San Luis Bay Dr North of Avila Jurisdiction Study Type Volume (ch1) Location Code 9866 South Direction Date 8/11/2006 Real Time 14:35 Start Date 8/11/2006 Start Time 15:00 Sample Time 00:15 57 Operator Number Machine Number 6 Tuesday, August 15, 2006 | | 08-15-06 (Ch1) | | 08-16-06 (Ch ² | 1) | | 08-17-06 (Ch1) | | | 08- | 8-06 (Ch | 1) | | |-------|-------------------------------|----------|---------------------------|-------------|-------|----------------------|------------|-------|--------------|----------|----------|--------| | HR | HR | HR | HR | | HR | HR | | HR | HR | | | | | Begin | Total 00-15 15-30 30-45 45-00 | Begin | Total 00-15 15-30 | 30-45 45-00 | Begin | Total 00-15 15-30 30 |)-45 45-00 | Begin | Total 00-1 | 5 15-30 | 30-45 45 | 5-00 | | 00 | 3 1 0 1 | 00 | 11 4 6 | 1 0 | 00 | 7 1 5 | 1 0 | 00 | 7 | 4 1 | 2 | 0 | | 01 | 9 2 0 3 | 01 | 6 1 1 | 3 1 | 01 | 6 0 0 | 4 2 | 01 | 9 | 1 4 | 3 | 1 | | 02 | 7 4 2 0 | 02 | 3 2 0 | 0 1 | 02 | 0 0 0 | 0 0 | 02 | 5 | 0 1 | 4 | 0 | | 03 | 4 3 0 0 | 03 | 4 0 1 | 1 2 | 03 | 3 0 1 | 1 1 | 03 | | 2 1 | 1 | 1 | | 04 | 22 2 5 5 10 | 04 | 24 0 7 | 9 8 | 04 | 23 5 6 | 5 7 | 04 | 29 | 1 6 | 12 | 10 | | 05 | 194 19 38 63 7 ₄ | 05 | 196 18 37 | 59 82 | 05 | 185 16 40 | 59 70 | 05 | 177 2 | 1 32 | 58 | 66 | | 06 | 242 74 70 53 49 | 06 | 253 68 70 | 61 54 | 06 | 244 75 63 | 59 47 | 06 | 230 5 | 9 57 | 63 | 51 | | 07 | 200 55 51 38 50 | | 160 38 42 | 39 41 | 07 | 163 43 44 | 34 42 | 07 | 148 4 | 4 40 | 27 | 37 | | 80 | 142 39 35 32 30 | 08 | 138 33 30 | 32 43 | 80 | 140 35 21 | 38 46 | 08 | 117 2 | 5 23 | 37 | 32 | | 09 | 126 33 36 27 30 | 09 | 150 30 38 | 42 40 | 09 | 139 32 31 | 36 40 | 09 | 160 3 | 8 29 | 40 | 53 | | 10 | 210 52 48 48 63 | 10 | 174 41 40 | 52 41 | 10 | 184 36 48 | 48 52 | 10 | 219 6 | 1 57 | 46 | 55 | | 11 | 140 34 61 45 (| 11 | 212 43 51 | 59 59 | 11 | 207 51 46 | 54 56 | 11 | 213 4 | 1 45 | 52 | 75 | | 12 | 0 0 0 0 | 12 | 234 60 59 | 46 69 | 12 | 269 60 78 | 70 61 | 12 | | 9 86 | 61 | 69 | | 13 | 69 0 0 2 6 | 13 | 217 66 44 | 61 46 | 13 | 252 56 56 | 66 74 | 13 | | 4 66 | 61 | 80 | | 14 | 237 60 52 56 69 | 14 | 229 54 43 | 68 64 | 14 | 195 52 61 | 43 39 | 14 | 274 7 | 6 71 | 65 | 62 | | 15 | 216 63 52 50 5° | 15 | 232 54 61 | 47 70 | 15 | 235 65 64 | 43 63 | 15 | 228 5 | 8 49 | 65 | 56 | | 16 | 172 46 47 40 39 | | 190 47 46 | 54 43 | 16 | 203 56 51 | 37 59 | 16 | 202 7 | 8 60 | 64 | | | 17 | 252 65 57 61 69 | 17 | 184 44 46 | 52 42 | 17 | 195 63 45 | 48 39 | 17 | | | | | | 18 | 138 32 34 48 24 | | 155 41 41 | 34 39 | 18 | 181 58 40 | 44 39 | 18 | | | | | | 19 | 106 29 26 25 20 | 19 | 120 35 29 | 33 23 | 19 | 127 41 29 | 32 25 | 19 | | | | | | 20 | 67 30 16 10 1 | | 87 33 14 | 26 14 | 20 | 98 20 21 | 26 31 | 20 | | | | | | 21 | 65 24 11 15 19 | <u> </u> | 66 16 17 | 12 21 | 21 | 82 15 34 | 20 13 | 21 | | | | | | 22 | 29 10 9 6 | 22 | 36 12 10 | 9 5 | 22 | 45 12 14 | 8 11 | 22 | | | | | | 23 | 14 1 4 6 ; | 23 | 25 8 7 | 8 2 | 23 | 27 8 4 | 13 2 | 23 | | | | | | | 2664 Total | | 3106 Total | | | 3210 Total | | | 2579 Total | AM Peak Hour Start 05:30 | ı A | AM Peak Hour Start | 05:45 | | AM Peak Hour Start | 05:30 | | AM Peak Hour | Start | 05 | 5:45 | | | AM Peak Hour Total 28 | A | AM Peak Hour Total | 281 | | AM Peak Hour Total | 267 | | AM Peak Hour | Γotal | | 245 | | | AM Peak Hour Factor 94.93 | % A | AM Peak Hour Factor | 85.67 % | | AM Peak Hour Factor | 89.00 % | | AM Peak Hour | actor | 92 | 2.80 % | | | PM Peak Hour Start 17:00 | F | PM Peak Hour Start | 14:30 | | PM Peak Hour Start | 12:00 | | PM Peak Hour | Start | | 3:45 | | | PM Peak Hour Total 253 | F | PM Peak Hour Total | 247 | | PM Peak Hour Total | 269 | | PM Peak Hour | Total | | 292 | | | PM Peak Hour Factor 91.30 | % F | PM Peak Hour Factor | 90.81 % | | PM Peak Hour Factor | 86.22 % | | PM Peak Hour | actor | 91 | 1.25 % | Site Name NB See Canyon RD Jurisdiction Study Type Volume (ch1) Location Code 8969 Direction North Date 8/11/2006 Real Time 16:15 Start Date 8/11/2006 Start Time 17:00 Sample Time 00:15 Operator Number 57 26 Machine Number Friday, August 11, 2006 | | | 08-11- | -06 (Cł | ո1) | | | | 08-12-06 (| Ch1) | | | | 08-13-06 (Ch1) | | | | 08-14- | 06 (Ch1 |) | | |-------|---------|----------|---------|-------|-------|-------|------------|------------|---------|---------|--------|-----------|----------------|------------|-------|-----------|----------|---------|-----------|------| | HR | HR | | - | | | HR | HR | • | | | HR | HR | | | HR | HR | | • | | | | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | Begin | Total 0 | 0-15 15-3 | 0 30-45 | 45-00 | Begin | Total | 00-15 15-30 30 | 0-45 45-00 | Begin | Total | 00-15 | 15-30 3 | 0-45 45-0 | 00 | | 00 | | | | | | 00 | 3 | 1 | 0 1 | 1 | 00 | 2 | 0 1 | 1 0 | 00 | 1 | 0 | 0 | 0 | 1 | | 01 | | | | | | 01 | 2 | 0 | 0 0 | 2 | 01 | 1 | 0 1 | 0 0 | 01 | 1 | 0 | 1 | 0 | 0 | | 02 | | | | | | 02 | 2 | 1 | 1 0 | 0 | 02 | 3 | 1 0 | 2 0 | 02 | 3 | 0 | 0 | 2 | 1 | | 03 | | | | | | 03 | 1 | 0 | 1 0 | 0 | 03 | 0 | 0 0 | 0 0 | 03 | 0 | 0 | 0 | 0 | 0 | | 04 | | | | | | 04 | 1 | 0 | 0 0 | 1 | 04 | 1 | 0 0 | 1 0 | 04 | 0 | 0 | 0 | 0 | 0 | | 05 | | | | | | 05 | 3 | 1 | 1 1 | 0 | 05 | 0 | 0 0 | 0 0 | 05 | 0 | 0 | 0 | 0 | 0 | | 06 | | | | | | 06 | 1 | 0 | 1 0 | 0 | 06 | 1 | 0 1 | 0 0 | 06 | 13 | 2 | 1 | 0 . | 10 | | 07 | | | | | | 07 | 12 | 2 | 3 3 | 3 4 | 07 | 7 | 1 3 | 2 1 | 07 | 26 | 10 | 7 | 4 | 5 | | 80 | | | | | | 08 | 21 | 3 | 4 8 | 6 | 08 | 16 | 7 2 | 1 6 | 08 | 26 | 6 | 6 | 5 | 9 | | 09 | | | | | | 09 | 14 | 1 | 5 3 | 5 | 09 | 12 | 4 2 | 3 3 | 09 | 21 | 9 | 6 | 4 | 2 | | 10 | | | | | | 10 | 31 | 8 | 8 7 | 8 | 10 | 29 | 6 6 | 10 7 | 10 | 32 | 5 | 12 | 4 | 11 | | 11 | | | | | | 11 | 36 | 7 | 8 16 | 5 | 11 | 39 | 14 9 | 10 6 | 11 | 43 | 9 | 8 | 9 | 17 | | 12 | | | | | | 12 | 45 | 9 1 | 0 14 | 12 | 12 | 39 | 12 8 | 4 15 | 12 | 44 | 12 | 3 | 14 | 15 | | 13 | | | | | | 13 | 49 | 16 | 7 12 | 14 | 13 | 54 | 8 12 | 13 21 | 13 | 49 | 13 | 3 | 21 | 12 | | 14 | | | | | | 14 | 75 | 22 | 9 20 | 24 | 14 | 68 | 16 20 | 13 19 | 14 | 45 | 13 | 7 | 20 | 5 | | 15 | | | | | | 15 | 77 | 22 | 9 18 | 3 28 | 15 | 85 | 35 23 | 14 13 | 15 | 68 | 16 | 9 | 18 | 25 | | 16 | | | | | | 16 | 92 | 30 2 | 9 19 | 14 | 16 | 70 | 19 20 | 18 13 | 16 | 61 | 12 | 12 | 15 | 22 | | 17 | 55 | 14 | 12 | 15 | 14 | 17 | 44 | 7 | 7 22 | 2 8 | 17 | 47 | 8 17 | 10 12 | 17 | 52 | 11 | 16 | 19 | 6 | | 18 | 25 | 3 | 10 | 6 | 6 | 18 | 26 | 11 | 5 4 | 1 6 | 18 | 24 | 3 3 | 11 7 | 18 | 46 | 14 | 12 | 5 | 15 | | 19 | 45 | 15 | 10 | 16 | 4 | 19 | 19 | 2 | 6 4 | 1 7 | 19 | 20 | 7 6 | 4 3 | 19 | 29 | 7 | 11 | 4 | 7 | | 20 | 30 | 6 | 8 | 6 | 10 | 20 | 23 | 5 | 6 8 | 3 4 | 20 | 19 | 3 9 | 5 2 | 20 | 30 | 5 | 9 | 11 | 5 | | 21 | 21 | 4 | 7 | 5 | 5 | 21 | 9 | 2 | 6 1 | 0 | 21 | 13 | 3 3 | 4 3 | 21 | 16 | 8 | 4 | 2 | 2 | | 22 | 12 | 4 | 1 | 0 | 7 | 22 | 18 | 6 | 7 2 | 2 3 | 22 | 6 | 1 2 | 0 3 | 22 | 5 | 0 | 4 | 0 | 1 | | 23 | 4 | 2 | 1 | 0 | 1 | 23 | 5 | 2 | 0 2 | 2 1 | 23 | 1 | 1 0 | 0 0 | 23 | 4 | 0 | 1 | 2 | 1 | | | 192 | Total | | | | | 609 T | otal | | | | 557 | Total | | | 615 | Total | | | | | | | = | | | | | _ | AM Peak | Hour Sta | art | | | | AM Peak Ho | our Start | | 10:45 | | AM Peak H | lour Start | 10:30 | | AM Peak I | Hour Sta | art | 11:0 | 00 | | | AM Peak | Hour To | tal | | | | AM Peak Ho | our Total | | 39 | | AM Peak H | lour Total | 40 | | AM Peak I | Hour To | tal | , | 43 | | | AM Peak | Hour Fa | ctor | | | | AM Peak Ho | our Factor | | 60.94 % | ,
o | AM Peak H | lour Factor | 71.43 | % | AM Peak I | Hour Fa | ctor | 63.1 | 24 % | | | PM Peak | Hour Sta | art | | 17:00 | | PM Peak Ho | our Start | | 15:45 | | PM Peak H | Hour Start | 14:45 | | PM Peak I | Hour Sta | art | 15:0 | 00 | | | PM Peak | Hour To | tal | | 55 | | PM Peak Ho | our Total | | 106 | | PM Peak H | our Total | 91 | | PM Peak I | Hour To | tal | 1 | 68 | | | PM Peak | Hour Fa | ctor | | 91.67 | % | PM Peak Ho | our Factor | | 88.33 % | ó | PM Peak H | Hour Factor | 65.00 | % | PM Peak I | Hour Fa | ctor | 68.0 | 00 % | Site Name NB See Canyon RD Jurisdiction Study Type Volume (ch1) Location Code 8969 Direction North Date 8/11/2006 Real Time 16:15 Start Date 8/11/2006 Start Time 17:00 Sample Time 00:15 Operator Number 57 26 Machine Number Tuesday, August 15, 2006 | | 08-15-06 (Ch1) | | 08-16-06 (Ch ² | 1) | | 08-17-06 (Ch1) |) | | 08-18-06 (C | h1) | |-------|-------------------------------|-------|---------------------------|-------------|-------|---------------------|------------|-------|---------------------|-------------| | HR | HR | HR | HR | | HR | HR | | HR | HR | | | Begin | Total 00-15 15-30 30-45 45-00 | Begin | Total 00-15 15-30 | 30-45 45-00 | Begin | Total 00-15 15-30 3 | 0-45 45-00 | Begin | Total 00-15 15-30 | 30-45 45-00 | | 00 | 0 0 0 0 0 | 00 | 0 0 0 | 0 0 | 00 | 1 0 0 | 0 1 | 00 | 0 0 0 | 0 0 | | 01 | 3 0 1 2 0 | 01 | 4 2 0 | 0 2 | 01 | 0 0 0 | 0 0 | 01 | 3 1 0 | 1 1 | | 02 | 1 1 0 0 0 | 02 | 2 2 0 | 0 0 | 02 | 0 0 0 | 0 0 | 02 | 0 0 0 | 0 0 | | 03 | 0 0 0 0 | 03 | 1 0 1 | 0 0 | 03 | 3 1 1 | 1 0 | 03 | 1 0 0 | 0 1 | | 04 | 1 0 0 1 0 | 04 | 0 0 0 | 0 0 | 04 | 0 0 0 | 0 0 | 04 | 1 0 0 | 1 0 | | 05 | 3 0 0 3 0 | 05 | 4 0 3 | 0 1 | 05 | 0 0 0 | 0 0 | 05 | 0 0 0 | 0 0 | | 06 | 10 2 2 2 4 | 06 | 8 0 3 | 0 5 | 06 | 7 0 0 | 3 4 | 06 | 9 0 1 | 3 5 | | 07 | 35 6 9 15 5 | 07 | 24 3 6 | 8 7 | 07 | 35 11 8 | 12 4 |
07 | 32 8 7 | 13 4 | | 80 | 24 4 2 8 10 | 08 | 29 7 9 | 4 9 | 80 | 17 7 2 | 1 7 | 08 | 25 6 6 | | | 09 | 33 8 9 7 9 | 09 | 36 8 14 | 7 7 | 09 | 38 11 1 | 14 12 | 09 | 33 4 6 | | | 10 | 36 5 9 7 15 | 10 | 31 8 14 | 1 8 | 10 | 34 3 5 | 8 18 | 10 | 37 <mark>666</mark> | | | 11 | 55 17 13 11 14 | 11 | 35 11 10 | 8 6 | 11 | 34 6 7 | 11 10 | 11 | 37 7 9 | | | 12 | 36 6 7 8 15 | 12 | 58 7 17 | 23 11 | 12 | 31 9 8 | 6 8 | 12 | 31 6 9 | | | 13 | 46 16 14 7 9 | 13 | 31 7 9 | 4 11 | 13 | 49 9 12 | 15 13 | 13 | 50 12 10 | | | 14 | 75 18 14 23 20 | 14 | 53 6 15 | 11 21 | 14 | 43 12 9 | 9 13 | 14 | 84 19 25 | | | 15 | 81 25 21 16 19 | 15 | 54 19 10 | 12 13 | 15 | 104 24 37 | 20 23 | 15 | 55 10 19 | | | 16 | 65 18 17 20 10 | 16 | 53 15 13 | 12 13 | 16 | 54 11 10 | 19 14 | 16 | 86 23 23 | | | 17 | 49 16 13 13 7 | 17 | 77 28 13 | 21 15 | 17 | 78 20 23 | 21 14 | 17 | 67 18 26 | | | 18 | 35 9 9 12 5 | 18 | 34 8 11 | 6 9 | 18 | 28 9 6 | 8 5 | 18 | 20 11 9 | | | 19 | 18 2 5 7 4 | 19 | 19 3 9 | 2 5 | 19 | 29 9 7 | 6 7 | 19 | | | | 20 | 23 8 5 10 0 | 20 | 14 4 4 | 3 3 | 20 | 15 2 4 | 3 6 | 20 | | | | 21 | 12 1 5 5 1 | 21 | 8 3 4 | 1 0 | 21 | 10 2 4 | 2 2 | 21 | | | | 22 | 12 5 4 3 0 | 22 | 8 2 3 | 3 0 | 22 | 10 4 2 | 4 0 | 22 | | | | 23 | 6 3 1 0 2 | 23 | 4 0 4 | 0 0 | 23 | 5 4 0 | 0 1 | 23 | | | | | 659 Total | | 587 Total | | Į | 625 Total | | | 571 Total | | | | | | | | | | | | | | | | AMB 111 0: 1 | | AMA D | 20.45 | | AMB 111 00 1 | 10.45 | | AMB 111 01 1 | 40.45 | | | AM Peak Hour Start 10:45 | | AM Peak Hour Start | 08:45 | | AM Peak Hour Start | 10:45 | | AM Peak Hour Start | 10:45 | | | AM Peak Hour Total 56 | , | AM Peak Hour Total | 38 | | AM Peak Hour Total | 42 | | AM Peak Hour Total | 48 | | | AM Peak Hour Factor 82.35 9 | 6 | AM Peak Hour Factor | 67.86 % | | AM Peak Hour Factor | 58.33 % | | AM Peak Hour Factor | 70.59 % | | | PM Peak Hour Start 14:30 | | PM Peak Hour Start | 17:00 | | PM Peak Hour Start | 15:00 | | PM Peak Hour Start | 16:00 | | | PM Peak Hour Total 89 | | PM Peak Hour Total | 77 | | PM Peak Hour Total | 104 | | PM Peak Hour Total | 86 | 68.75 % PM Peak Hour Factor 70.27 % 89.00 % PM Peak Hour Factor PM Peak Hour Factor 89.58 % PM Peak Hour Factor Site Name SB SEE CANYON RD Jurisdiction Study Type Volume (ch1) Location Code 9887 South Direction Date 8/26/2006 Real Time 16:48 Start Date 8/26/2006 Start Time 17:00 00:15 Sample Time 29 Operator Number Machine Number 3507 Saturday, August 26, 2006 | | | 08-26- | -06 (Cl | ո1) | | | 08-27- | 06 (Ch1) | | | | 08-28-06 (CI | h1) | | | 08-29-0 | 6 (Ch1) | | |-------|---------|---------|---------|----------|--------|------|------------------|-----------|----------|-------|-----------|--------------|-------------|-------|-----------|------------|---------|-----------| | HR | HR | | | | | HR | HR | | | HR | HR | | | HR | HR | | | | | Begin | Total | 00-15 | 15-30 | 30-45 45 | -00 B | egin | Total 00-15 | 15-30 30- | 45 45-00 | Begin | Total | 00-15 15-30 | 30-45 45-00 | Begin | Total | 00-15 1 | 5-30 30 | -45 45-00 | | 00 | | | | | | 00 | 0 0 | 0 | 0 0 | 00 | 0 | 0 0 | 0 0 | 00 | 0 | 0 | 0 | 0 0 | | 01 | | | | | | 01 | 0 0 | 0 | 0 0 | 01 | 1 | 0 0 | 1 0 | 01 | 0 | 0 | 0 | 0 0 | | 02 | | | | | | 02 | 0 0 | 0 | 0 0 | 02 | 0 | 0 0 | 0 0 | 02 | 0 | 0 | 0 | 0 0 | | 03 | | | | | | 03 | 0 0 | 0 | 0 0 | 03 | 2 | 0 0 | 2 0 | 03 | 1 | 0 | 0 | 0 1 | | 04 | | | | | | 04 | 2 1 | 0 | 0 1 | 04 | 1 | 1 0 | 0 0 | 04 | 1 | 0 | 0 | 0 1 | | 05 | | | | | | 05 | 7 2 | 0 | 2 3 | 05 | 9 | 2 3 | | 05 | 7 | 0 | 0 | 2 5 | | 06 | | | | | | 06 | 21 4 | 1 | 9 7 | 06 | 21 | 3 2 | | 06 | 20 | 3 | 2 | 8 7 | | 07 | | | | | | 07 | 56 9 | | 19 15 | 07 | 74 | 14 13 | _ | 07 | 60 | 17 | 11 | 24 8 | | 80 | | | | | | 80 | 59 28 | | 10 11 | 08 | 53 | 27 11 | 13 2 | 80 | 61 | 17 | 19 | 17 8 | | 09 | | | | | | 09 | 39 12 | 9 | 8 10 | 09 | 30 | 10 3 | | 09 | 33 | 8 | 10 | 7 8 | | 10 | | | | | | 10 | 40 10 | _ | 17 5 | 10 | 39 | 13 5 | | 10 | 35 | 5 | 6 | 11 13 | | 11 | | | | | | 11 | 45 10 | 13 | 9 13 | 11 | 35 | 8 12 | | 11 | 45 | 14 | 8 | 9 14 | | 12 | | | | | | 12 | 50 12 | _ | 10 13 | 12 | 42 | 17 10 | | 12 | 48 | 14 | 9 | 15 10 | | 13 | | | | | | 13 | 52 7 | | 14 11 | 13 | 56 | 17 14 | | 13 | 51 | 12 | 9 | 13 17 | | 14 | | | | | | 14 | 51 12 | | 14 11 | 14 | 36 | 14 6 | | 14 | 57 | 22 | 4 | 11 20 | | 15 | | | | | | 15 | 54 11 | | 18 6 | 15 | 52 | 8 17 | | 15 | 42 | 3 | 9 | 18 12 | | 16 | | | | | | 16 | 65 17 | | 12 19 | 16 | 56 | 15 12 | | 16 | 46 | 18 | 10 | 6 12 | | 17 | 56 | | 15 | | | 17 | 46 12 | _ | 18 6 | 17 | 39 | 11 4 | | 17 | 31 | 4 | 12 | 9 6 | | 18 | 41 | | 15 | | | 18 | 28 6 | | 10 8 | 18 | 29 | 4 8 | | 18 | 40 | 9 | 15 | 11 5 | | 19 | 20 | | 8 | 0 | | 19 | 26 8 | 4 | 8 6 | 19 | 18 | 5 6 | | 19 | 19 | 6 | 9 | 2 2 | | 20 | 8 | - | 2 | | | 20 | 7 1 | 5 | 0 1 | 20 | 8 | 1 4 | | 20 | 11 | 5 | 4 | 0 2 | | 21 | 17 | | 8 | | | 21 | 10 3 | 6 | 0 1 | 21 | 3 | 0 3 | | 21 | 2 | 1 | 0 | 0 1 | | 22 | 4 | • | 0 | | | 22 | 3 1 | 0 | 0 2 | 22 | 3 | 2 0 | | 22 | 4 | 0 | 2 | 1 1 | | 23 | 4 | 0 | 2 | 0 | 2 | 23 | 2 0 | 1 | 1 0 | 23 | 1 | 0 1 | 0 0 | 23 | 4 | 2 | 2 | 0 0 | | | 150 | Total | | | | | 663 Total | | | | 608 | Total | | | 618 | Total | _ | | | | | | | | | AM Peak | | | | | | AM Peak Hour Sta | | 07:15 | | AM Peak H | | 07:15 | | AM Peak I | | | 07:30 | | | AM Peak | | | | | | AM Peak Hour To | | 75 | | AM Peak H | | 87 | | AM Peak I | | | 68 | | | AM Peak | | | | | | AM Peak Hour Fa | | 66.96 % | | AM Peak H | | 80.56 % | | AM Peak I | | | 70.83 % | | | PM Peak | | | 17 | 7:00 | | PM Peak Hour Sta | | 16:00 | | PM Peak H | | 15:15 | | PM Peak I | | | 13:15 | | | PM Peak | | | | 56 | | PM Peak Hour To | | 65 | | PM Peak H | | 59 | | PM Peak I | | | 61 | | | PM Peak | Hour Fa | ctor | 82 | 2.35 % | | PM Peak Hour Fa | ctor | 85.53 % | ó | PM Peak H | our Factor | 86.76 % | | PM Peak I | Hour Facto | or | 69.32 % | Site Name SB SEE CANYON RD Jurisdiction Study Type Volume (ch1) Location Code 9887 South Direction Date 8/26/2006 Real Time 16:48 Start Date 8/26/2006 Start Time 17:00 00:15 Sample Time 29 Operator Number Machine Number 3507 Wednesday, August 30, 2006 | | 08-30-06 (C | h1) | | 0 | 8-31-06 (Ch1) | | | 09- | 01-06 (Ch1) | | | | 09-02-0 | 06 (Ch1 |) | | |-------|---------------------|-------------|-------|-------------|---------------|------------|--------|--------------|----------------|---------|-------|------------|----------|---------|---------|--------| | HR | HR | | HR | HR | | | HR | HR | | | HR | HR | | | | | | Begin | Total 00-15 15-30 | 30-45 45-00 | Begin | Total 00 | 0-15 15-30 30 | 0-45 45-00 | Begin | Total 00-1 | 15 15-30 30-45 | 45-00 | Begin | Total 0 | 00-15 | 15-30 3 | 0-45 45 | 5-00 | | 00 | 0 0 0 | 0 0 | 00 | 1 | 1 0 | 0 0 | 00 | 2 | 1 1 0 | 0 | 00 | 2 | 2 | 0 | 0 | 0 | | 01 | 2 0 0 | 2 0 | 01 | 0 | 0 0 | 0 0 | 01 | 0 | 0 0 0 | 0 | 01 | 1 | 0 | 0 | 0 | 1 | | 02 | 0 0 0 | 0 0 | 02 | 0 | 0 0 | 0 0 | 02 | 0 | 0 0 0 | 0 | 02 | 0 | 0 | 0 | 0 | 0 | | 03 | 1 0 0 | 0 1 | 03 | 0 | 0 0 | 0 0 | 03 | 0 | 0 0 0 | 0 | 03 | 0 | 0 | 0 | 0 | 0 | | 04 | 1 0 0 | | 04 | 3 | 1 2 | 0 0 | 04 | 4 | 3 0 0 | 1 | 04 | 4 | 1 | 0 | 2 | 1 | | 05 | 13 1 2 | 1 9 | 05 | 6 | 0 3 | 1 2 | 05 | 1 | 0 0 0 | 1 | 05 | 1 | 0 | 0 | 0 | 1 | | 06 | 20 5 1 | 4 10 | 06 | 12 | 3 0 | 4 5 | 06 | 11 | 4 2 5 | 0 | 06 | 10 | 1 | 0 | 6 | 3 | | 07 | 68 8 6 | | 07 | 52 | 10 11 | 15 16 | 07 | 15 | 2 3 6 | | 07 | 5 | 2 | 1 | 0 | 2 | | 80 | 61 24 13 | | 08 | 55 | 19 10 | 13 13 | 80 | | 8 1 5 | | 08 | 17 | 4 | 6 | 4 | 3 | | 09 | 48 8 13 | | 09 | 40 | 14 13 | 9 4 | 09 | | 12 13 11 | 11 | 09 | 38 | 10 | 8 | 5 | 15 | | 10 | 39 8 11 | | 10 | 38 | 9 15 | 5 9 | 10 | | 16 12 17 | _ | 10 | 33 | 8 | 6 | 10 | 9 | | 11 | 49 15 9 | | 11 | 37 | 4 9 | 9 15 | 11 | | 22 10 13 | | 11 | 39 | 8 | 8 | 13 | 10 | | 12 | 36 9 6 | | 12 | 54 | 17 18 | 15 4 | 12 | | 16 12 19 | | 12 | 64 | 10 | 18 | 14 | 22 | | 13 | 65 13 15 | | 13 | 72 | 22 16 | 18 16 | 13 | | 25 21 21 | | 13 | 64 | 22 | 10 | 20 | 12 | | 14 | 56 22 8 | | 14 | 63 | 21 13 | 14 15 | 14 | | 18 20 12 | | 14 | 81 | 11 | 21 | 27 | 22 | | 15 | 51 13 14 | | 15 | 48 | 6 17 | 17 8 | 15 | | 14 19 11 | | 15 | 77 | 15 | 18 | 25 | 19 | | 16 | 44 8 13 | | 16 | 65 | 14 12 | 28 11 | 16 | 81 2 | 26 23 21 | | 16 | 82 | 22 | 24 | 23 | 13 | | 17 | 51 15 12 | | 17 | 54 | 13 13 | 18 10 | 17 | | 9 29 11 | | 17 | 50 | 14 | 15 | 17 | 4 | | 18 | 27 5 12 | | 18 | 48 | 6 13 | 12 17 | 18 | | 6 15 17 | 28 | 18 | 37 | 12 | 7 | 6 | 12 | | 19 | 23 11 6 | | 19 | 26 | 5 11 | 8 2 | 19 | | 16 14 4 | | 19 | 25 | 11 | 3 | 5 | 6 | | 20 | 22 3 2 | | 20 | 14 | 6 3 | 1 4 | 20 | 28 | 8 4 12 | 2 4 | 20 | 6 | 2 | 1 | 3 | 0 | | 21 | 4 0 0 | _ | 21 | 3 | 0 0 | 3 0 | 21 | 12 | 6 2 3 | 1 | 21 | 14 | 2 | 5 | 5 | 2 | | 22 | 1 0 0 | 1 0 | 22 | 10 | 0 5 | 4 1 | 22 | 5 | 0 3 1 | 1 | 22 | 11 | 3 | 4 | 1 | 3 | | 23 | 2 2 0 | 0 0 | 23 | 0 | 0 0 | 0 0 | 23 | 10 | 1 1 5 | 3 | 23 | 4 | 1 | 2 | 0 | 1 | | | 684 Total | | | 701 To | otal | | | 821 Tota | I | | | 665 T | otal | AM Peak Hour Start | 07:30 | | AM Peak Ho | ur Start | 07:15 | | AM Peak Hour | Start | 10:15 | | AM Peak Ho | our Sta | rt | 06 | 9:45 | | | AM Peak Hour Total | 91 | | AM Peak Ho | ur Total | 61 | | AM Peak Hour | Total | 70 | | AM Peak Ho | our Tota | al | | 39 | | | AM Peak Hour Factor | 78.45 % | | AM Peak Ho | | 80.26 % | ,
o | AM Peak Hour | Factor | 79.55 % | | AM Peak Ho | our Fac | tor | 6 | 5.00 % | | | PM Peak Hour Start | 13:15 | | PM Peak Hou | ur Start | 13:00 | | PM Peak Hour | Start | 15:45 | | PM Peak Ho | our Sta | rt | 1: | 5:30 | | | PM Peak Hour Total | 74 | | PM Peak Ho | ur Total | 72 | | PM Peak Hour | Total | 92 | | PM Peak Ho | our Tota | al | | 90 | | | PM Peak Hour Factor | 84.09 % | | PM Peak Ho | ur Factor | 81.82 % | Ď | PM Peak Hour | Factor | 88.46 % | | PM Peak Ho | our Fac | tor | 90 | 0.00 % | Site Name SB SEE CANYON RD Jurisdiction Study Type Volume (ch1) Location Code 9887 South
Direction Date 8/26/2006 Real Time 16:48 Start Date 8/26/2006 Start Time 17:00 00:15 Sample Time Operator Number 29 Machine Number 3507 Sunday, September 03, 2006 | | | 09-03 | -06 (Cł | ո1) | | | | 09-04 | -06 (Cł | ո1) | | |-------|-----------|----------|---------|-------|-------|-------|---------|----------|---------|-------|---------| | HR | HR | | | | | HR | HR | | | | | | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | | 00 | 0 | 0 | 0 | 0 | 0 | 00 | 1 | 0 | 0 | 1 | 0 | | 01 | 0 | 0 | 0 | 0 | 0 | 01 | 0 | 0 | 0 | 0 | 0 | | 02 | 2 | 0 | 1 | 0 | 1 | 02 | 0 | 0 | 0 | 0 | 0 | | 03 | 2 | 0 | 1 | 1 | 0 | 03 | 2 | 0 | 1 | 1 | 0 | | 04 | 2 | 1 | 0 | 0 | 1 | 04 | 6 | 1 | 0 | 0 | 5 | | 05 | 2 | 0 | 1 | 0 | 1 | 05 | 8 | 0 | 3 | 2 | 3 | | 06 | 6 | 0 | 0 | 5 | 1 | 06 | 24 | 5 | 2 | 4 | 13 | | 07 | 10 | 3 | 1 | 4 | 2 | 07 | 60 | 9 | 13 | 13 | 25 | | 80 | 23 | 1 | 2 | 7 | 13 | 08 | 70 | 16 | 30 | 14 | 10 | | 09 | 36 | 8 | 8 | 5 | 15 | 09 | 29 | 5 | 10 | 7 | 7 | | 10 | 50 | 14 | 10 | 13 | 13 | 10 | 43 | 8 | 17 | 7 | 11 | | 11 | 49 | 8 | 13 | 15 | 13 | 11 | 66 | 12 | 18 | 22 | 14 | | 12 | 81 | 19 | 22 | 24 | 16 | 12 | 54 | 13 | 12 | 21 | 8 | | 13 | 58 | 14 | 11 | 9 | 24 | 13 | | | | | | | 14 | 67 | 13 | 20 | 11 | 23 | 14 | | | | | | | 15 | 59 | 16 | 13 | 14 | 16 | 15 | | | | | | | 16 | 79 | 28 | 8 | 21 | 22 | 16 | | | | | | | 17 | 45 | 12 | 11 | 10 | 12 | 17 | | | | | | | 18 | 35 | 3 | 5 | 11 | 16 | 18 | | | | | | | 19 | 39 | 8 | 6 | 14 | 11 | 19 | | | | | | | 20 | 18 | 8 | 2 | 3 | 5 | 20 | | | | | | | 21 | 7 | 3 | 2 | 2 | 0 | 21 | | | | | | | 22 | 0 | 0 | 0 | 0 | 0 | 22 | | | | | | | 23 | 3 | 0 | 2 | 1 | 0 | 23 | | | | | | | | 673 | Total | | | | | 363 | Total | | | | | | | | | | | | | | | | | | | AM Peak I | Hour Sta | art | | 09:45 | | AM Peak | Hour Sta | art | | 07:45 | | | AM Peak I | Hour To | tal | | 52 | | AM Peak | Hour To | tal | | 85 | | | AM Peak I | Hour Fa | ctor | | 86.67 | % | AM Peak | Hour Fa | ctor | | 70.83 % | | | PM Peak I | Hour Sta | art | | 12:00 | | PM Peak | Hour Sta | art | | 12:00 | | | PM Peak I | Hour To | tal | | 81 | | PM Peak | Hour To | tal | | 54 | 84.38 % PM Peak Hour Factor 64.29 % PM Peak Hour Factor Site Name Squire Canyon Rd 2-directional volumes HR Begin HR Total 08-27-06 (Ch1) 00-15 15-30 30-45 45-00 Jurisdiction Study Type Volume (ch1) Location Code Direction None Date 8/26/2006 Real Time 15:32 Start Date 8/26/2006 Start Time 16:00 Sample Time 00:15 Operator Number Machine Number Saturday, August 26, 2006 | | | 08-26 | -06 (Cl | ո1) | | |-------|-------|-------|---------|-------|-------| | HR | HR | | | | | | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | | 00 | | | | | | | 01 | | | | | | | 02 | | | | | | | 03 | | | | | | | 04 | | | | | | | 05 | | | | | | | 06 | | | | | | | 07 | | | | | | | 80 | | | | | | | 09 | | | | | | | 10 | | | | | | | 11 | | | | | | | 12 | | | | | | | 13 | | | | | | | 14 | | | | | | | 15 | | | | | | | 16 | 25 | 8 | 8 | 3 | 6 | | 17 | 31 | 5 | 6 | 6 | 14 | | 18 | 29 | 6 | 7 | 9 | 7 | | 19 | 29 | 8 | 7 | 2 | 12 | | 20 | 19 | 10 | 4 | 5 | 0 | | 21 | 10 | 2 | 2 | 5 | 1 | | 22 | 4 | 2 | 0 | 2 | 0 | | 23 | 3 | 1 | 1 | 1 | 0 | | | 150 | Total | | | | | | | - | _ | - | | | | | | | = | | |-----------|---------|-------|---|-------|----|------|-----|---------|------|---|-------|---| | 3 | 1 | 1 | 1 | 0 | 23 | | 2 | 1 | 1 | 0 | 0 | | | 150 | Total | | | | | | 458 | Total | AM Peak I | Hour St | art | | | | AM P | eak | Hour St | art | | 11:00 | | | AM Peak I | Hour To | otal | | | | AM P | eak | Hour To | tal | | 39 | | | AM Peak I | Hour Fa | actor | | | | AM P | eak | Hour Fa | ctor | | 81.25 | % | | PM Peak I | Hour St | art | | 17:45 | | PM P | eak | Hour St | art | | 14:00 | | | PM Peak I | Hour To | otal | | 36 | | PM P | eak | Hour To | tal | | 43 | | | PM Peak I | Hour Fa | actor | | 64.29 | % | PM P | eak | Hour Fa | ctor | | 82.69 | % | | | | | | | | | | | | | | | | | | 08-28 | -06 (Ch | ո1) | | |-------|-------|-------|---------|-------|-------| | HR | HR | | | | | | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | | 00 | 0 | 0 | 0 | 0 | 0 | | 01 | 0 | 0 | 0 | 0 | 0 | | 02 | 0 | 0 | 0 | 0 | 0 | | 03 | 0 | 0 | 0 | 0 | 0 | | 04 | 3 | 1 | 1 | 1 | 0 | | 05 | 4 | 0 | 3 | 0 | 1 | | 06 | 9 | 1 | 3 | 1 | 4 | | 07 | 34 | 2 | 4 | 17 | 11 | | 80 | 39 | 12 | 8 | 11 | 8 | | 09 | 29 | 6 | 4 | 6 | 13 | | 10 | 34 | 9 | 9 | 7 | 9 | | 11 | 28 | 10 | 6 | 3 | 9 | | 12 | 24 | 12 | 1 | 6 | 5 | | 13 | 38 | 4 | 11 | 13 | 10 | | 14 | 37 | 5 | 12 | 11 | 9 | | 15 | 30 | 7 | 5 | 10 | 8 | | 16 | 33 | 9 | 12 | 5 | 7 | | 17 | 50 | 9 | 11 | 13 | 17 | | 18 | 21 | 2 | 6 | 8 | 5 | | 19 | 23 | 8 | 6 | 4 | 5 | | 20 | 10 | 2 | 3 | 3 | 2 | | 21 | 11 | 2 | 3 | 3 | 3 | | 22 | 6 | 1 | 3 | 0 | 2 | | 23 | 2 | 0 | 0 | 1 | 1 | | | 465 | Total | | | | | | | | | | | AM Peak Hour Start AM Peak Hour Total PM Peak Hour Start PM Peak Hour Total PM Peak Hour Factor AM Peak Hour Factor 07:30 17:00 70.59 % 73.53 % | HR | HR | | | | | | | | |--------------------------|-------|-------|-------|-------|-------|--|--|--| | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | | | | | 00 | 0 | 0 | 0 | 0 | 0 | | | | | 01 | 0 | 0 | 0 | 0 | 0 | | | | | 02 | 0 | 0 | 0 | 0 | 0 | | | | | 03 | 0 | 0 | 0 | 0 | 0 | | | | | 04 | 3 | 0 | 1 | 2 | 0 | | | | | 05 | 2 | 0 | 0 | 0 | 2 | | | | | 06 | 18 | 1 | 8 | 3 | 6 | | | | | 07 | 40 | 4 | 3 | 17 | 16 | | | | | 80 | 35 | 9 | 9 | 7 | 10 | | | | | 09 | 33 | 10 | 10 | 4 | 9 | | | | | 10 | 18 | 4 | 2 | 6 | 6 | | | | | 11 | 31 | 12 | 4 | 3 | 12 | | | | | 12 | 25 | 7 | 9 | 6 | 3 | | | | | 13 | 25 | 7 | 8 | 7 | 3 | | | | | 14 | 33 | 7 | 4 | 7 | 15 | | | | | 15 | 31 | 8 | 7 | 9 | 7 | | | | | 16 | 49 | 13 | 14 | 10 | 12 | | | | | 17 | 50 | 14 | 15 | 10 | 11 | | | | | 18 | 26 | 7 | 7 | 5 | 7 | | | | | 19 | 28 | 8 | 8 | 9 | 3 | | | | | 20 | 15 | 4 | 5 | 3 | 3 | | | | | 21 | 10 | 4 | 2 | 3 | 1 | | | | | 22 | 9 | 3 | 4 | 0 | 2 | | | | | 23 | 4 | 1 | 2 | 1 | 0 | | | | | | 485 | Total | | | | | | | | | | | | | | | | | | AM Peak Hour Start 07:30 | | | | | | | | | | | | 51 | | | | | | | AM Peak Hour Factor PM Peak Hour Start PM Peak Hour Total PM Peak Hour Factor 08-29-06 (Ch1) 75.00 % 85.00 % 16:30 Site Name Squire Canyon Rd Jurisdiction Study Type Volume (ch1) Location Code 9882 Direction None Date 8/26/2006 Real Time 15:32 Start Date 8/26/2006 Start Time 16:00 Sample Time 00:15 Operator Number 29 602 Machine Number Wednesday, August 30, 2006 | | 08-30-06 (Ch | n1) | _ | 08-31-06 (Ch | 11) | | 09-01-06 (Ch1 |) | _ | 09-02-0 | 06 (Ch1) | | |-------|---------------------|-------------|-------|---------------------|-------------|-------|---------------------|------------|-------|--------------------|------------------|-----------| | HR | HR | <u> </u> | HR | HR | | HR | HR | | HR | HR | | | | Begin | Total 00-15 15-30 | 30-45 45-00 | Begin | Total 00-15 15-30 | 30-45 45-00 | Begin | Total 00-15 15-30 3 | 0-45 45-00 | Begin | Total 00-15 | 15-30 30-45 45-0 | JO | | 00 | 4 1 3 | 0 0 | 00 | 1 1 0 | 0 0 | 00 | 1 1 0 | 0 0 | 00 | 0 0 | 0 0 | 0 | | 01 | 0 0 0 | 0 0 | 01 | 0 0 0 | 0 0 | 01 | 1 0 1 | 0 0 | 01 | 1 0 | 1 0 | 0 | | 02 | 0 0 0 | 0 0 | 02 | 0 0 0 | 0 0 | 02 | 0 0 0 | 0 0 | 02 | 0 0 | 0 0 | 0 | | 03 | 0 0 0 | 0 0 | 03 | 0 0 0 | 0 0 | 03 | 0 0 0 | 0 0 | 03 | 0 0 | 0 0 | 0 | | 04 | 3 0 2 | 1 0 | 04 | 0 0 0 | 0 0 | 04 | 3 0 0 | 0 3 | 04 | 0 0 | 0 0 | 0 | | 05 | 3 0 0 | 0 3 | 05 | 5 1 2 | 1 1 | 05 | 1 0 0 | 1 0 | 05 | 4 1 | 2 1 | 0 | | 06 | 11 2 6 | 1 2 | 06 | 10 3 3 | 0 4 | 06 | 6 1 2 | 1 2 | 06 | 6 2 | 3 1 | 0 | | 07 | 42 7 4 | 19 12 | 07 | 33 0 7 | 13 13 | 07 | 10 1 3 | 2 4 | 07 | 6 3 | 1 1 | 1 | | 80 | 36 6 9 | 12 9 | 08 | 30 8 8 | 7 7 | 08 | 25 8 4 | 5 8 | 80 | 23 5 | 5 5 | 8 | | 09 | 16 4 3 | 3 6 | 09 | 23 4 7 | 5 7 | 09 | 27 6 7 | 8 6 | 09 | 21 8 | 2 4 | 7 | | 10 | 36 11 5 | 12 8 | 10 | 28 6 7 | 5 10 | 10 | 28 5 8 | 10 5 | 10 | 35 9 | 6 10 1 | 10 | | 11 | 36 11 10 | 7 8 | 11 | 34 8 12 | 4 10 | 11 | 39 5 11 | 13 10 | 11 | 26 9 | 6 6 | 5 | | 12 | 33 15 6 | | 12 | 30 9 6 | 7 8 | 12 | 37 9 14 | 9 5 | 12 | 31 6 | 7 10 | 8 | | 13 | 27 7 11 | 7 2 | 13 | 34 8 9 | 11 6 | 13 | 39 12 13 | 6 8 | 13 | 25 7 | | 10 | | 14 | 41 5 14 | 8 14 | 14 | 35 5 14 | 6 10 | 14 | 40 6 12 | 10 12 | 14 | 39 6 | 10 12 1 | 11 | | 15 | 49 9 6 | 16 18 | 15 | 42 8 6 | 11 17 | 15 | 51 12 17 | 12 10 | 15 | 49 16 | 12 11 1 | 10 | | 16 | 32 6 14 | 6 6 | 16 | 42 11 9 | 8 14 | 16 | 46 10 12 | 7 17 | 16 | 25 8 | - | 3 | | 17 | 38 7 10 | | 17 | 46 11 9 | 14 12 | 17 | 40 15 9 | 9 7 | 17 | 32 4 | | 10 | | 18 | 30 3 6 | 13 8 | 18 | 39 12 8 | 9 10 | 18 | 27 8 6 | 5 8 | 18 | 24 8 | 7 2 | 7 | | 19 | 33 12 7 | | 19 | 30 9 9 | 7 5 | 19 | 21 3 4 | 10 4 | 19 | 28 6 | 8 6 | 8 | | 20 | 15 1 6 | | 20 | 21 4 5 | 5 7 | 20 | 23 7 8 | 3 5 | 20 | 24 10 | | 7 | | 21 | 13 2 6 | | 21 | 19 5 3 | 6 5 | 21 | 19 8 4 | 4 3 | 21 | 17 1 | 8 3 | 5 | | 22 | 9 4 2 | | 22 | 14 4 0 | 5 5 | 22 | 13 3 6 | 2 2 | 22 | 12 6 | 3 3 | 0 | | 23 | 6 1 2 | 1 2 | 23 | 8 7 0 | 0 1 | 23 | 6 6 0 | 0 0 | 23 | 0 0 | 0 0 | 0 | | | 513 Total | | | 524 Total | | | 503 Total | | | 428 Total | AM Peak Hour Start | 07:30 | | AM Peak Hour Start | 07:30 | | AM Peak Hour Start | 11:00 | | AM Peak Hour Sta | rt 10:0 | 00 | | | AM Peak Hour Total | 46 | | AM Peak Hour Total | 42 | | AM Peak Hour Total | 39 | | AM Peak Hour Total | al ? | 35 | | | AM Peak Hour Factor | 60.53 % | | AM Peak Hour Factor | 80.77 % | | AM Peak Hour Factor | 75.00 % | | AM Peak Hour Fac | tor 87.5 | 50 % | | | PM Peak Hour Start | 15:30 | | PM Peak Hour Start | 15:30 | | PM Peak Hour Start | 14:45 | | PM Peak Hour Sta | rt 14:3 | 30 | | | PM Peak Hour Total | 54 | | PM Peak Hour Total | 48 | | PM Peak Hour Total | 53 | | PM Peak Hour Total | al f | 51 | | | PM Peak Hour Factor | 75.00 % | | PM Peak Hour Factor | 70.59 % | | PM Peak Hour Factor | 77.94 % | | PM Peak Hour Fac | tor 79.6 | 69 % | Site Name Squire Canyon Rd Jurisdiction
Study Type Volume (ch1) Location Code 9882 Direction None Date 8/26/2006 Real Time 15:32 Start Date 8/26/2006 Start Time 16:00 00:15 Sample Time Operator Number 29 Machine Number 602 Sunday, September 03, 2006 | | | 09-03 | -06 (Cł | ո1) | | |-------|-------|-------|---------|-------|-------| | HR | HR | | | | | | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | | 00 | 2 | 1 | 1 | 0 | 0 | | 01 | 0 | 0 | 0 | 0 | 0 | | 02 | 1 | 1 | 0 | 0 | 0 | | 03 | 0 | 0 | 0 | 0 | 0 | | 04 | 2 | 0 | 2 | 0 | 0 | | 05 | 3 | 1 | 1 | 0 | 1 | | 06 | 5 | 1 | 3 | 1 | 0 | | 07 | 16 | 6 | 0 | 2 | 8 | | 80 | 16 | 0 | 4 | 5 | 7 | | 09 | 17 | 1 | 2 | 8 | 6 | | 10 | 35 | 10 | 11 | 5 | 9 | | 11 | 21 | 4 | 8 | 4 | 5 | | 12 | 34 | 10 | 8 | 8 | 8 | | 13 | 29 | 8 | 8 | 4 | 9 | | 14 | 38 | 12 | 7 | 13 | 6 | | 15 | 37 | 6 | 12 | 6 | 13 | | 16 | 36 | 9 | 10 | 11 | 6 | | 17 | 29 | 9 | 10 | 7 | 3 | | 18 | 27 | 4 | 10 | 5 | 8 | | 19 | 16 | 6 | 3 | 4 | 3 | | 20 | 22 | 6 | 5 | 8 | 3 | | 21 | 10 | 4 | 2 | 2 | 2 | | 22 | 3 | 1 | 0 | 1 | 1 | | 23 | 4 | 2 | 0 | 1 | 1 | | | 403 | Total | | | | | | | 09-04 | -06 (Cł | ո1) | | |-------|-------|-------|---------|-------|-------| | HR | HR | | | | | | Begin | Total | 00-15 | 15-30 | 30-45 | 45-00 | | 00 | 1 | 1 | 0 | 0 | 0 | | 01 | 0 | 0 | 0 | 0 | 0 | | 02 | 0 | 0 | 0 | 0 | 0 | | 03 | 0 | 0 | 0 | 0 | 0 | | 04 | 3 | 1 | 1 | 0 | 1 | | 05 | 5 | 0 | 1 | 0 | 4 | | 06 | 7 | 1 | 3 | 2 | 1 | | 07 | 43 | 2 | 10 | 20 | 11 | | 80 | 48 | 15 | 16 | 4 | 13 | | 09 | 25 | 7 | 6 | 8 | 4 | | 10 | 26 | 5 | 6 | 7 | 8 | | 11 | 30 | 2 | 10 | 11 | 7 | | 12 | 28 | 12 | 5 | 4 | 7 | | 13 | 26 | 4 | 3 | 9 | 10 | | 14 | 12 | 12 | | | | | 15 | | | | | | | 16 | | | | | | | 17 | | | | | | | 18 | | | | | | | 19 | | | | | | | 20 | | | | | | | 21 | | | | | | | 22 | | | | | | | 23 | | | | | | | | 254 | Total | | | | | AM Peak Hour Start | 09:30 | |---------------------|---------| | AM Peak Hour Total | 35 | | AM Peak Hour Factor | 79.55 % | | PM Peak Hour Start | 15:45 | | PM Peak Hour Total | 43 | | PM Peak Hour Factor | 82.69 % | | AM Peak Hour Start | 07:30 | |---------------------|---------| | AM Peak Hour Total | 62 | | AM Peak Hour Factor | 77.50 % | | PM Peak Hour Start | 13:15 | | PM Peak Hour Total | 34 | | PM Peak Hour Factor | 70.83 % | #### Avila Beach@San Luis Bay | Thursday 8/17/06
AM | NBL | NBT | NBR NB | Trucks | WBL | WBT | WBR WB | Trucks | SBL | SBT | SBR SB | Trucks | EBL | EBT | EBR EE | Trucks | |------------------------|-----|-----|--------|--------|-----|-----|--------|--------|-----|-----|--------|--------|-----|-----|--------|--------| | 7:00-7:15 | 0 | 0 | 0 | 0 | 0 | 58 | 7 | 3 | 1 | 0 | 38 | 1 | 19 | 16 | 0 | 2 | | 7:15-7:30 | 0 | 0 | 0 | 0 | 0 | 105 | 17 | 4 | 2 | 0 | 82 | 2 | 29 | 30 | 0 | 3 | | 7:30-7:45 | 0 | 0 | 0 | 0 | 0 | 143 | 27 | 6 | 6 | 0 | 108 | 2 | 42 | 44 | 0 | 4 | | 7:45-8:00 | 0 | 0 | 0 | 0 | 0 | 180 | 45 | 9 | 12 | 0 | 144 | 4 | 58 | 55 | 0 | 4 | | 8:00-8:15 | 0 | 0 | 0 | 0 | 0 | 208 | 56 | 12 | 18 | 0 | 164 | 5 | 69 | 74 | 0 | 5 | | 8:15-8:30 | 0 | 0 | 0 | 0 | 0 | 235 | 70 | 14 | 24 | 0 | 174 | 7 | 82 | 94 | 0 | 6 | | 8:30-8:45 | 0 | 0 | 0 | 0 | 0 | 266 | 78 | 17 | 31 | 0 | 205 | 8 | 94 | 115 | 0 | 11 | | 8:45-9:00 | 0 | 0 | 0 | 0 | 0 | 300 | 93 | 20 | 39 | 0 | 238 | 9 | 106 | 126 | 0 | 14 | | Thursday 8/17/06 | | | | | | | | | | | | | | | | | | PM | | | | | | | | | | | | | | | | | | 4:00-4:15 | 0 | 0 | 0 | 0 | 0 | 34 | 13 | 0 | 11 | 0 | 38 | 0 | 65 | 90 | 0 | 2 | | 4:15-4:30 | 0 | 0 | 0 | 0 | 0 | 78 | 24 | 0 | 22 | 0 | 73 | 1 | 105 | 177 | 0 | 2 | | 4:30-4:45 | 0 | 0 | 0 | 0 | 0 | 110 | 37 | 1 | 37 | 0 | 93 | 1 | 188 | 267 | 0 | 3 | | 4:45-5:00 | 0 | 0 | 0 | 0 | 0 | 145 | 52 | 1 | 55 | 0 | 117 | 1 | 273 | 384 | 0 | 5 | | 5:00-5:15 | 0 | 0 | 0 | 0 | 0 | 179 | 63 | 3 | 80 | 0 | 147 | 3 | 335 | 484 | 0 | 5 | | 5:15-5:30 | 0 | 0 | 0 | 0 | 0 | 209 | 74 | 4 | 94 | 0 | 168 | 3 | 491 | 643 | 0 | 7 | | 5:30-5:45 | 0 | 0 | 0 | 0 | 0 | 242 | 82 | 4 | 103 | 0 | 199 | 3 | 560 | 717 | 0 | 7 | | 5:45-6:00 | 0 | 0 | 0 | 0 | 0 | 275 | 96 | 4 | 111 | 0 | 230 | 3 | 607 | 801 | 0 | 9 | Intersection: Avila Beach Drive at San Luis Bay Drive | Thursday 04/19/07
AM | NBL | NBT | NBR NBTrucks | WBL | WBT | WBR WBTrucks | SBL | SBT | SBR SBTrucks | EBL | EBT | EBR EBTrucks | |-------------------------|-----|-----|--------------|-----|-----|--------------|-----|-----|--------------|-----|-----|--------------| | 7:00-7:15 | | | 2 | 11 | 57 | | | | | | 14 | 0 | | 7:15-7:30 | | | 5 | 5 | 63 | | | | | | 18 | 0 | | 7:30-7:45 | | | 3 | 5 | 64 | | | | | | 13 | 1 | | 7:45-8:00 | | | 4 | 4 | 52 | | | | | | 16 | 0 | | 8:00-8:15 | | | 6 | 9 | 31 | | | | | | 19 | 0 | | 8:15-8:30 | | | 4 | 3 | 37 | | | | | | 21 | 1 | | 8:30-8:45 | | | 5 | 8 | 42 | | | | | | 19 | 0 | | 8:45-9:00 | | | 2 | 8 | 37 | | | | | | 22 | 0 | | Thursday 04/19/07 | | | | | | | | | | | | | | PM | | | | | | | | | | | | | | 4:00-4:15 | | | 9 | 3 | 41 | | | | | | 57 | 0 | | 4:15-4:30 | | | 10 | 4 | 46 | | | | | | 58 | 2 | | 4:30-4:45 | | | 8 | 6 | 38 | | | | | | 111 | 0 | | 4:45-5:00 | | | 12 | 4 | 26 | | | | | | 191 | 0 | | 5:00-5:15 | | | 20 | 2 | 37 | | | | | | 255 | 1 | | 5:15-5:30 | | | 18 | 7 | 40 | | | | | | 274 | 0 | | 5:30-5:45 | | | 17 | 4 | 75 | | | | | | 253 | 0 | | 5:45-6:00 | | | 14 | 4 | 36 | | | | | | 13 | 0 | Intersection: Avila Beach Drive at San Miguel Street | Thursday 04/19/07 | NBL | NBT | NBR NBTrucks | WBL | WBT | WBR WBTrucks | SBL | SBT | SBR SBTrucks | EBL | EBT | EBR EBTrucks | |-------------------|-----|-----|--------------|-----|-----|--------------|-----|-----|--------------|-----|-----|--------------| | AM | | | | | | | | | | | | | | 7:00-7:15 | 4 | | 1 | 8 | 51 | | | | | | 12 | 1 | | 7:15-7:30 | 5 | | 5 | 7 | 56 | | | | | | 14 | 2 | | 7:30-7:45 | 1 | | 0 | 1 | 62 | | | | | | 14 | 1 | | 7:45-8:00 | 3 | | 1 | 5 | 44 | | | | | | 5 | 0 | | 8:00-8:15 | 1 | | 2 | 3 | 29 | | | | | | 8 | 4 | | 8:15-8:30 | 4 | | 5 | 5 | 32 | | | | | | 16 | 2 | | 8:30-8:45 | 4 | | 0 | 5 | 36 | | | | | | 19 | 2 | | 8:45-9:00 | 4 | | 2 | 5 | 37 | | | | | | 21 | 4 | | Thursday 04/19/07 | | | | | | | | | | | | | | PM | | | | | | | | | | | | | | 4:00-4:15 | 3 | | 8 | 4 | 37 | | | | | | 49 | 7 | | 4:15-4:30 | 9 | | 11 | 6 | 40 | | | | | | 49 | 12 | | 4:30-4:45 | 8 | | 6 | 7 | 31 | | | | | | 105 | 4 | | 4:45-5:00 | 4 | | 9 | 3 | 23 | | | | | | 182 | 7 | | 5:00-5:15 | 2 | | 11 | 10 | 27 | | | | | | 244 | 14 | | 5:15-5:30 | 5 | | 5 | 7 | 33 | | | | | | 269 | 9 | | 5:30-5:45 | 7 | | 11 | 6 | 69 | | | | | | 242 | 7 | | 5:45-6:00 | 0 | | 6 | 8 | 28 | | | | | | 107 | 3 | | | | | | | | | | | | | | | Intersection: Avila Beach Drive at First Street # APPENDIX B **EXISTING CONDITIONS** FREEWAY AND INTERSECTION LEVELS OF SERVICE #### **BASIC FREEWAY SEGMENTS WORKSHEET** Average Passenger-Car Speed (mi/h) rce-Flow Speed FFS = 75 mith Application | Input Output 70 midt 70FFS, N, v_p Operational (LOS) LOS, S, D 65 midh 1450 60 mith N, S, D Design (N) FFS, LOS, v_D 6055 mith Design (v_p) FFS, LOS, N v_B, S, D 50 Planning (LOS) LOS, S, D FFS, N, AADT Planning (N) FFS, LOS, AADT N, S, D Planning (v_o) FFS, LOS, N v_p, S, D 30 1600 1200 2400 Flow Rate (pc/h/ln) General Information Site Information Highway/Direction of Travel Analyst US 101 North or South J. Gormley Agency or Company From/To North of San Luis Bay Drive TPG Consulting, Inc. Date Performed Jurisdiction Caltrans 1/10/2007 Analysis Time Period Analysis Year 2006 Non Summer Weekday Project Description Avila Circulation Element Update 06-1052 Oper.(LOS) Des.(N) □ Planning Data Flow Inputs Volume, V 4150 veh/h Peak-Hour Factor, PHF 0.90 **AADT** %Trucks and Buses, P_T 9 veh/day 0 Peak-Hr Prop. of AADT, K %RVs, P_R Peak-Hr Direction Prop. D General Terrain: Level $DDHV = AADT \times K \times D$ veh/h Grade Length mi 1.00 Driver type adjustment Up/Down % Calculate Flow Adjustments f_p 1.00 E_R 1.2 E_{T} 1.5 $f_{HV} = 1/[1 + P_T(E_T - 1) + P_R(E_R - 1)]$ 0.957 Speed Inputs Calc Speed Adj and FFS Lane Width ft 12.0 mi/h f_{LW} Rt-Shoulder Lat. Clearance ft 6.0 f_{LC} mi/h Interchange Density 0.50 I/mi f_{ID} mi/h Number of Lanes, N 2 mi/h f_N FFS (measured) 70.0 mi/h **FFS** 70.0 mi/h Base free-flow Speed, BFFS mi/h LOS and Performance Measures Design (N) Design (N) Operational (LOS) Design LOS $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x f_p) 2409$ pc/h/ln $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x f_p)$ pc/h mi/h mi/h $D = v_p / S$ pc/mi/ln $D = v_n / S$ pc/mi/ln F LOS Required Number of Lanes, N Glossary Factor Location N - Number of lanes S - Speed f_{LW} - Exhibit 23-4 E_R - Exhibits23-8, 23-10 V - Hourly volume D - Density DDHV - Directional design hour volume FFS - Free-flow speed BFFS - Base free-flow speed E_T - Exhibits 23-8, 23-10, 23-11 LOS, S, FFS, v_n - Exhibits 23-2, 23-3 f_p - Page 23-12 f_{IC} - Exhibit 23-5 f_N - Exhibit 23-6 f_{ID} - Exhibit 23-7 v_n - Flow rate LOS - Level of service #### **BASIC FREEWAY SEGMENTS WORKSHEET** Average Passenger-Car Speed (mi/h) rce-Flow Speed FFS = 75 mith Application | Input Output 70 midt 70FFS, N, v_p Operational (LOS) LOS, S, D 65 midh 1450 60 mith N, S, D Design (N) FFS, LOS, v_D 6055 mith Design (v_p) FFS, LOS, N v_B, S, D 50 Planning (LOS) LOS, S, D FFS, N, AADT Planning (N) FFS, LOS, AADT N, S, D Planning (v_o) FFS, LOS, N v_p, S, D 30 1600 1200 2400 Flow Rate (pc/h/ln) General Information Site Information Highway/Direction of Travel Analyst US 101 North or South J. Gormley Agency or Company From/To North of San Luis Bay Drive TPG Consulting, Inc. Date Performed Jurisdiction Caltrans 1/10/2007 Analysis Time Period Analysis Year 2006 Summer/Holiday Weekend Project Description Avila Circulation Element Update 06-1052 Oper.(LOS) Des.(N) □ Planning Data Flow Inputs Volume, V 4333 veh/h Peak-Hour Factor, PHF 0.90 **AADT** %Trucks and Buses, P_T 9 veh/day 0 Peak-Hr Prop. of AADT, K %RVs, P_R Peak-Hr Direction Prop. D General Terrain: Level $DDHV = AADT \times K \times D$ veh/h Grade Length mi 1.00 Driver type adjustment Up/Down % Calculate Flow
Adjustments f_p 1.00 E_R 1.2 E_{T} 1.5 $f_{HV} = 1/[1 + P_T(E_T - 1) + P_R(E_R - 1)]$ 0.957 Speed Inputs Calc Speed Adj and FFS Lane Width ft 12.0 mi/h f_{LW} Rt-Shoulder Lat. Clearance ft 6.0 f_{LC} mi/h Interchange Density 0.50 I/mi f_{ID} mi/h Number of Lanes, N 2 mi/h f_N FFS (measured) 70.0 mi/h **FFS** 70.0 mi/h Base free-flow Speed, BFFS mi/h LOS and Performance Measures Design (N) Design (N) Operational (LOS) Design LOS $v_{p} = (V \text{ or DDHV}) / (PHF x N x f_{HV} x f_{p}) 2516$ pc/h/ln $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x f_p)$ pc/h mi/h mi/h $D = v_p / S$ pc/mi/ln $D = v_n / S$ pc/mi/ln F LOS Required Number of Lanes, N Glossary Factor Location N - Number of lanes S - Speed f_{LW} - Exhibit 23-4 E_R - Exhibits23-8, 23-10 V - Hourly volume D - Density E_T - Exhibits 23-8, 23-10, 23-11 f_{LC} - Exhibit 23-5 v_n - Flow rate FFS - Free-flow speed DDHV - Directional design hour volume BFFS - Base free-flow speed LOS, S, FFS, v_n - Exhibits 23-2, 23-3 f_p - Page 23-12 f_N - Exhibit 23-6 f_{ID} - Exhibit 23-7 LOS - Level of service #### **BASIC FREEWAY SEGMENTS WORKSHEET** Average Passenger-Car Speed (mi/h) Free-Flow Speed FFS = 75 mith Application | Output Input 70 midt 70 FFS, N, $v_{\rm p}$ Operational (LOS) LOS, S, D 65 mi/h _1450 60 mith Design (N) FFS, LOS, v_D N, S, D 60 55 mith Design (v_p) FFS, LOS, N v_B, S, D 50 LOS, S, D Planning (LOS) FFS, N, AADT Planning (N) FFS, LOS, AADT N, S, D Planning (v_o) FFS, LOS, N v_p, S, D 30 1200 1600 2400 Flow Rate (pc/h/ln) General Information Site Information Highway/Direction of Travel Analyst US 101 North or South J. Gormley Agency or Company From/To San Luis Bay Dr to Avila Beach TPG Consulting, Inc. Date Performed Jurisdiction Caltrans 1/10/2007 Analysis Time Period Analysis Year 2006 Non Summer Weekday Project Description Avila Circulation Element Update 06-1052 Oper.(LOS) Des.(N) □ Planning Data Flow Inputs Volume, V 3800 veh/h Peak-Hour Factor, PHF 0.90 **AADT** %Trucks and Buses, P_T 9 veh/day %RVs, P_R 0 Peak-Hr Prop. of AADT, K General Terrain: Peak-Hr Direction Prop. D Level $DDHV = AADT \times K \times D$ Grade veh/h Length mi 1.00 Driver type adjustment Up/Down % Calculate Flow Adjustments f_p 1.00 E_R 1.2 E_T 0.957 1.5 $f_{HV} = 1/[1 + P_T(E_T - 1) + P_R(E_R - 1)]$ Speed Inputs Calc Speed Adj and FFS Lane Width 12.0 ft f_{LW} mi/h Rt-Shoulder Lat. Clearance ft 6.0 f_{LC} mi/h Interchange Density 0.50 I/mi f_{ID} mi/h Number of Lanes, N 2 mi/h f_N FFS (measured) 70.0 mi/h **FFS** 70.0 mi/h Base free-flow Speed, BFFS mi/h **LOS and Performance Measures** Design (N) | D = V _p / S
LOS | 36.8 pc/mi/ln
E | $D = v_p / S$
Required Number of Lanes, N | pc/mi/ln
lumber of Lanes, N | | | | | |--|---|--|---|--|--|--|--| | Glossary | | Factor Location | | | | | | | N - Number of lanes V - Hourly volume v_p - Flow rate LOS - Level of service DDHV - Directional design | S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow speed hour volume | E_R - Exhibits23-8, 23-10
E_T - Exhibits 23-8, 23-10, 23-11
f_p - Page 23-12
LOS, S, FFS, v_p - Exhibits 23-2, 23-3 | f _{LW} - Exhibit 23-4
f _{LC} - Exhibit 23-5
f _N - Exhibit 23-6
f _{ID} - Exhibit 23-7 | | | | | | Copyright @ 2005 University of Florid | da All Pights Posanyad | UCC.TM Version 5 24 | Generated: 3/5/2007 10:08 AM | | | | | S pc/h/ln mi/h Design (N) Design LOS $v_p = (V \text{ or DDHV}) / (PHF \times N \times f_{HV} \times f_p) 2206$ $v_p = (V \text{ or DDHV}) / (PHF \times N \times f_{HV} \times f_p)$ pc/h mi/h Operational (LOS) #### **BASIC FREEWAY SEGMENTS WORKSHEET** Average Passenger-Car Speed (mi/h) Free-Flow Speed FFS = 75 mith Application | Output Input 70 midt 70 FFS, N, $v_{\rm p}$ Operational (LOS) LOS, S, D 65 mi/h 1450 60 mith N, S, D Design (N) FFS, LOS, v_D 6055 mith Design (v_p) FFS, LOS, N v_B, S, D 50 Planning (LOS) LOS, S, D FFS, N, AADT Planning (N) FFS, LOS, AADT N, S, D Planning (v_o) FFS, LOS, N v_o, S, D 30 1200 1600 2400 Flow Rate (pc/h/ln) General Information Site Information Highway/Direction of Travel Analyst US 101 North or South J. Gormley Agency or Company From/To San Luis Bay Dr to Avila Beach TPG Consulting, Inc. Date Performed Jurisdiction Caltrans 1/10/2007 Analysis Time Period Analysis Year 2006 Summer/Holiday Weekend Project Description Avila Circulation Element Update 06-1052 Oper.(LOS) Des.(N) □ Planning Data Flow Inputs Volume, V 3968 veh/h Peak-Hour Factor, PHF 0.90 **AADT** %Trucks and Buses, P_T 9 veh/day %RVs, P_R 0 Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop. D General Terrain: Level $DDHV = AADT \times K \times D$ Grade veh/h Length mi 1.00 Driver type adjustment Up/Down % Calculate Flow Adjustments f_p 1.00 E_R 1.2 0.957 E_{T} 1.5 $f_{HV} = 1/[1 + P_T(E_T - 1) + P_R(E_R - 1)]$ Speed Inputs Calc Speed Adj and FFS Lane Width 12.0 ft f_{LW} mi/h Rt-Shoulder Lat. Clearance ft 6.0 f_{LC} mi/h Interchange Density 0.50 I/mi f_{ID} mi/h Number of Lanes, N 2 mi/h f_N FFS (measured) 70.0 mi/h **FFS** 70.0 mi/h Base free-flow Speed, BFFS mi/h **LOS and Performance Measures** Design (N) Design (N) Operational (LOS) Design LOS $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x f_p) 2304$ pc/h/ln $v_p = (V \text{ or DDHV}) / (PHF \times N \times f_{HV} \times f_p)$ pc/h mi/h mi/h | LOS | E | l p | F 9, | |--|---|--|---| | LOS | L | Required Number of Lanes, N | | | Glossary | | Factor Location | | | N - Number of lanes V - Hourly volume v_p - Flow rate LOS - Level of service DDHV - Directional design | S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow speed hour volume | E _R - Exhibits23-8, 23-10
E _T - Exhibits 23-8, 23-10, 23-11
f _p - Page 23-12
LOS, S, FFS, v _p - Exhibits 23-2, 23-3 | f_{LW} - Exhibit 23-4
f_{LC} - Exhibit 23-5
f_{N} - Exhibit 23-6
f_{ID} - Exhibit 23-7 | | Converient @ 2005 University of Flori | do All Dights Decembed | | Canadada 2/F/2007 40:00 All | $D = v_n / S$ pc/mi/ln 40.5 pc/mi/ln #### **BASIC FREEWAY SEGMENTS WORKSHEET** Average Passenger-Car Speed (mi/h) rce-Flow Speed FFS = 75 mith Application | Input Output 70 midt 70FFS, N, v_p Operational (LOS) LOS, S, D 65 midh 1450 60 mith N, S, D Design (N) FFS, LOS, v_D 6055 mith Design (v_p) FFS, LOS, N v_B, S, D 50 Planning (LOS) LOS, S, D FFS, N, AADT Planning (N) FFS, LOS, AADT N, S, D Planning (v_o) FFS, LOS, N v_p, S, D 30 1600 1200 2400 Flow Rate (pc/h/ln) General Information Site Information Highway/Direction of Travel Analyst US 101 North or South J. Gormley Agency or Company From/To South of Avila Beach Drive TPG Consulting, Inc. Date Performed Jurisdiction Caltrans 1/10/2007 Analysis Time Period Analysis Year 2006 Non Summer Weekday Project Description Avila Circulation Element Update 06-1052 Oper.(LOS) Des.(N) □ Planning Data Flow Inputs Volume, V 4300 veh/h Peak-Hour Factor, PHF 0.90 **AADT** %Trucks and Buses, P_T 9 veh/day 0 Peak-Hr Prop. of AADT, K %RVs, P_R Peak-Hr Direction Prop. D General Terrain: Level $DDHV = AADT \times K \times D$ veh/h Grade Length mi 1.00 Driver type adjustment Up/Down % Calculate Flow Adjustments f_p 1.00 E_R 1.2 E_{T} 1.5 $f_{HV} = 1/[1 + P_T(E_T - 1) + P_R(E_R - 1)]$ 0.957 Speed Inputs Calc Speed Adj and FFS Lane Width ft 12.0 mi/h f_{LW} Rt-Shoulder Lat. Clearance ft 6.0 f_{LC} mi/h Interchange Density 0.50 I/mi f_{ID} mi/h Number of Lanes, N 2 mi/h f_N FFS (measured) 70.0 mi/h **FFS** 70.0 mi/h Base free-flow Speed, BFFS mi/h LOS and Performance Measures Design (N) Design (N) Operational (LOS) Design LOS $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x f_p) 2496$ pc/h/ln $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x f_p)$ pc/h mi/h mi/h $D = v_p / S$ pc/mi/ln $D = v_n / S$ pc/mi/ln F LOS Required Number of Lanes, N Glossary Factor Location N - Number of lanes S - Speed f_{LW} - Exhibit 23-4 E_R - Exhibits23-8, 23-10 V - Hourly volume D - Density DDHV - Directional design hour volume FFS - Free-flow speed BFFS - Base free-flow speed E_T - Exhibits 23-8, 23-10, 23-11 LOS, S, FFS, v_n - Exhibits 23-2, 23-3 f_p - Page 23-12 f_{IC} - Exhibit 23-5 f_N - Exhibit 23-6 f_{ID} - Exhibit 23-7 v_n - Flow rate LOS - Level of service #### **BASIC FREEWAY SEGMENTS WORKSHEET** Average Passenger-Car Speed (mi/h) rce-Flow Speed FFS = 75 mith Application | Input Output 70 midt 70FFS, N, v_p Operational (LOS) LOS, S, D 65 midh 1450 60 mith Design (N) FFS, LOS, v_D N, S, D 6055 mith Design (v_p) FFS, LOS, N v_B, S, D 50 Planning (LOS) LOS, S, D FFS, N, AADT FFS, LOS, AADT Planning (N) N, S, D Planning (v_o) FFS, LOS, N v_p, S, D 30 1600 1200 2400 Flow Rate (pc/h/ln) General Information Site Information Highway/Direction of Travel Analyst US 101 North or South J. Gormley Agency or Company From/To South of Avila Beach Drive TPG Consulting, Inc. Date Performed
Jurisdiction Caltrans 1/10/2007 Analysis Time Period Analysis Year 2006 Summer/Holiday Weekend Project Description Avila Circulation Element Update 06-1052 Oper.(LOS) Des.(N) □ Planning Data Flow Inputs Volume, V 4490 veh/h Peak-Hour Factor, PHF 0.90 **AADT** %Trucks and Buses, P_T 9 veh/day 0 Peak-Hr Prop. of AADT, K %RVs, P_R Peak-Hr Direction Prop. D General Terrain: Level $DDHV = AADT \times K \times D$ veh/h Grade Length mi 1.00 Driver type adjustment Up/Down % Calculate Flow Adjustments f_p 1.00 E_R 1.2 E_{T} 1.5 $f_{HV} = 1/[1 + P_T(E_T - 1) + P_R(E_R - 1)]$ 0.957 Speed Inputs Calc Speed Adj and FFS Lane Width ft 12.0 mi/h f_{LW} Rt-Shoulder Lat. Clearance ft 6.0 f_{LC} mi/h Interchange Density 0.50 I/mi f_{ID} mi/h Number of Lanes, N 2 mi/h f_N FFS (measured) 70.0 mi/h **FFS** 70.0 mi/h Base free-flow Speed, BFFS mi/h LOS and Performance Measures Design (N) Design (N) Operational (LOS) Design LOS $v_{p} = (V \text{ or DDHV}) / (PHF x N x f_{HV} x f_{p}) 2607$ pc/h/ln $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x f_p)$ pc/h mi/h mi/h $D = v_p / S$ pc/mi/ln $D = v_n / S$ pc/mi/ln F LOS Required Number of Lanes, N Glossary Factor Location N - Number of lanes S - Speed f_{LW} - Exhibit 23-4 E_R - Exhibits23-8, 23-10 DDHV - Directional design hour volume D - Density FFS - Free-flow speed BFFS - Base free-flow speed E_T - Exhibits 23-8, 23-10, 23-11 LOS, S, FFS, v_n - Exhibits 23-2, 23-3 f_p - Page 23-12 f_{LC} - Exhibit 23-5 f_N - Exhibit 23-6 f_{ID} - Exhibit 23-7 V - Hourly volume LOS - Level of service v_n - Flow rate | TWO-WAY STOP CONTROL SUMMARY | | | | | | | | | | |------------------------------|-----------------------------|-------------------------|----------------------------|--|--|--|--|--|--| | General Information | | Site Information | | | | | | | | | Analyst | S Leon | Intersection | Avila Beach @ San Luis Bay | | | | | | | | Agency/Co. | TOG Consulting | Jurisdiction | County of SLO | | | | | | | | Date Performed | 8/22/2006 | Analysis Year | 2006 | | | | | | | | Analysis Time Period | Existing non summer weekday | | | | | | | | | | Project Description 06-1 | 052 | | | | | | | | | | East/West Street: Avila Bo | each Drive | North/South Street: S | an Luis Bay Drive | | | | | | | | Intersection Orientation: | East-West | Study Period (hrs): 0.2 | 25 | | | | | | | | Vehicle Volumes and | Adjustments | | | | | | | | | | Vehicle Volumes and | Adjustments | | | | | | | |-------------------------------|-------------|------------|------|------|------------|------|--| | Major Street | | Eastbound | | | Westbound | | | | Movement | 1 | 2 | 3 | 4 | 5 | 6 | | | | L | T | R | L | Т | R | | | Volume (veh/h) | 314 | 379 | | | 107 | 41 | | | Peak-Hour Factor, PHF | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | | Hourly Flow Rate, HFR (veh/h) | 341 | 411 | 0 | 0 | 116 | 44 | | | Percent Heavy Vehicles | 4 | | | 0 | | | | | Median Type | | Undivided | | | | | | | RT Channelized | | | 0 | | | 0 | | | Lanes | 1 | 1 | 0 | 0 | 1 | 0 | | | Configuration | L | T | | | | TR | | | Upstream Signal | | 0 | | | 0 | | | | Minor Street | | Northbound | | | Southbound | | | | Movement | 7 | 8 | 9 | 10 | 11 | 12 | | | | L | Т Т | R | L | Т Т | R | | | Volume (veh/h) | | | | 59 | | 77 | | | Peak-Hour Factor, PHF | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | | Hourly Flow Rate, HFR (veh/h) | 0 | 0 | 0 | 64 | 0 | 83 | | | Percent Heavy Vehicles | 0 | 0 | 0 | 3 | 0 | 3 | | | Percent Grade (%) | | 0 | | | 0 | | | | Flared Approach | | N | | | N | | | | Storage | | 0 | | | 0 | | | | RT Channelized | | | 0 | | | 0 | | | Lanes | 0 | 0 | 0 | 0 | 0 | 0 | | | Configuration | | | | | LR | | | | Delay, Queue Length, ar | nd Level of Serv | rice | | | | | | | |-------------------------|------------------|-----------|---|------------|---|------------|------|----| | Approach | Eastbound | Westbound | | Northbound | d | Southbound | | | | Movement | 1 | 4 | 7 | 7 8 9 | | | 11 | 12 | | Lane Configuration | L | | | | | | LR | | | v (veh/h) | 341 | | | | | | 147 | | | C (m) (veh/h) | 1407 | | | | | | 281 | | | v/c | 0.24 | | | | | | 0.52 | | | 95% queue length | 0.95 | | | | | | 2.82 | | | Control Delay (s/veh) | 8.4 | | | | | | 31.0 | | | LOS | Α | | | | | | D | | | Approach Delay (s/veh) | | | | , | | | 31.0 | • | | Approach LOS | | | | | | | D | | HCS+TM Version 5.21 Generated: 8/31/2007 1:41 PM | General Information | | Site Information | | |---|--|---|---| | Analyst
Agency/Co.
Date Performed
Analysis Time Period | S Leon
TPG Consulting
8/22/2006
Existing summer/holiday
weeken | Intersection
Jurisdiction
Analysis Year | Avila Beach @ San Luis Bay
County of SLO
2006 | | Project Description 06-1 | 052 | <u>'</u> | | | East/West Street: Avila Be | each Drive | North/South Street: S | an Luis Bay Drive | | Intersection Orientation: | East-West | Study Period (hrs): 0.2 | 25 | | | | | ` | ` ' | | | |-------------------------------|-------------|------------|--------------|------|------------|------| | Vehicle Volumes and | Adjustments | | | | | | | Major Street | | Eastbound | | | Westbound | | | Movement | 1 | 2 | 3 | 4 | 5 | 6 | | | L | T | R | L | T | R | | Volume (veh/h) | 328 | 396 | | | 111 | 42 | | Peak-Hour Factor, PHF | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | Hourly Flow Rate, HFR (veh/h) | 356 | 430 | 0 | 0 | 120 | 45 | | Percent Heavy Vehicles | 2 | | | 0 | | | | Median Type | | Undivided | | | | | | RT Channelized | | | 0 | | | 0 | | Lanes | 1 | 1 | 0 | 0 | 1 | 0 | | Configuration | L | T | | | | TR | | Upstream Signal | | 0 | | | 0 | | | Minor Street | | Northbound | | | Southbound | | | Movement | 7 | 8 | 9 | 10 | 11 | 12 | | | L | T | R | L | T | R | | Volume (veh/h) | | | | 61 | | 81 | | Peak-Hour Factor, PHF | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | Hourly Flow Rate, HFR (veh/h) | 0 | 0 | 0 | 66 | 0 | 88 | | Percent Heavy Vehicles | 0 | 0 | 0 | 2 | 0 | 2 | | Percent Grade (%) | | 0 | | | 0 | | | Flared Approach | | N | | | N | | | Storage | | 0 | | | 0 | | | RT Channelized | | | 0 | | | 0 | | Lanes | 0 | 0 | 0 | 0 | 0 | 0 | | Configuration | | | | | LR | | | Delay, Queue Length, ar | nd Level of Serv | ice | | | | | | | |-------------------------|------------------|-----------|-------|------------|---|------------|------|----| | Approach | Eastbound | Westbound | | Northbound | | Southbound | | | | Movement | 1 | 4 | 7 8 9 | | | 10 | 11 | 12 | | Lane Configuration | L | | | | | | LR | | | v (veh/h) | 356 | | | | | | 154 | | | C (m) (veh/h) | 1413 | | | | | | 264 | | | v/c | 0.25 | | | | | | 0.58 | | | 95% queue length | 1.00 | | | | | | 3.37 | | | Control Delay (s/veh) | 8. <i>4</i> | | | | | | 36.1 | | | LOS | Α | | | | | | E | | | Approach Delay (s/veh) | | | | * | - | | 36.1 | | | Approach LOS | | | | | | | Ε | | HCS+TM Version 5.21 Generated: 8/31/2007 1:43 PM | | TV | VO-WAY STOP | CONTR | OL SUM | IMARY | | | | |---|---|--|------------------------------|---|-----------------|----------|----------|------------| | General Information | | | | nformati | | | | | | Analyst
Agency/Co.
Date Performed
Analysis Time Period | J. Gormle
TPG Con
6/13/2007
Existing n | sulting, Inc.
7
on summer weekda | Interse
Jurisdi
Analys | Intersection Avila Beach Driv Jurisdiction County of SLO Analysis Year 2007 | | | | t San Luis | | Project Description 06- | | lation Element | | | | | | | | East/West Street: Avila I | | | | | et: San Luis | Street | | | | Intersection Orientation: | East-West | | Study | Period (hrs | s): <i>0.25</i> | | | | | Vehicle Volumes an | d Adjustmen | ts | | | | | | | | Major Street | | Eastbound | | | | Westbour | nd | | | Movement | 11 | 2 | 3 | | 4 | 5 | | 6 | | | L | T | R | | L | T | | R | | Volume (veh/h) | | 670 | 5 | | 30 | 154 | | | | Peak-Hour Factor, PHF | 0.92 | 0.92 | 0.92 | | 0.92 | 0.92 | | 0.92 | | Hourly Flow Rate, HFR (veh/h) | 0 | 728 | 5 | | 32 | 167 | | 0 | | Percent Heavy Vehicles | 0 | | | | 2 | | | | | Median Type | | Undivided | | | | | | | | RT Channelized | | | 0 | | | | | 0 | | Lanes | 0 | 1 | 0 | | 1 | 1 | | 0 | | Configuration | | | TR | | L | T | | | | Upstream Signal | | 0 | | | | 0 | | | | Minor Street | | Northbound | | | | Southbou | nd | | | Movement | 7 | 8 | 9 | | 10 | 11 | | 12 | | | L | T | R | | L | Т | | R | | Volume (veh/h) | 1 | | 23 | | | | | | | Peak-Hour Factor, PHF | 0.92 | 0.92 | 0.92 | <u> </u> | 0.92 | 0.92 | | 0.92 | | Hourly Flow Rate, HFR (veh/h) | 1 | 0 | 24 | | 0 | 0 | | 0 | | Percent Heavy Vehicles | 2 | 0 | 2 | | 0 | 0 | | 0 | | Percent Grade (%) | | 0 | | | | 0 | | | | Flared Approach | | N | | | | N | | | | Storage | | 0 | | | | 0 | | | | RT Channelized | | | 0 | | | | | 0 | | Lanes | 1 | 0 | 1 | | 0 | 0 | | 0 | | Configuration | L | | R | | | | | | | Delay, Queue Length, ar | nd Level of Serv | rice | | · | | | | | | Approach | Eastbound | Westbound | | Northbour | nd | S | outhboun | d | | Movement | 1 | 4 | 7 | 8 | 9 | 10 | 11 | 12 | | Lane Configuration | · | L | L | | R | | | | | v (veh/h) | | 32 | 1 | | 24 | | | | | Delay, Queue Length, ar | nd Level of Serv | rice | | | | | | | |-------------------------|------------------|-----------|------|------------|------|------------|----|----| | Approach | Eastbound | Westbound | | Northbound | t | Southbound | | | | Movement | 1 | 4 | 7 | 7 8 9 | | | 11 | 12 | | Lane Configuration | | L | L | | R | | | | | v (veh/h) | | 32 | 1 | | 24 | | | | | C (m) (veh/h) | | 872 | 274 | | 422 | | | | | v/c | | 0.04 | 0.00 | | 0.06 | | | | | 95% queue length
| | 0.11 | 0.01 | | 0.18 | | | | | Control Delay (s/veh) | | 9.3 | 18.2 | | 14.0 | | | | | LOS | | Α | С | | В | | | | | Approach Delay (s/veh) | | | | 14.2 | · | | , | | | Approach LOS | | | | В | | | | | | | | | | T1.4 | | | | | HCS+TM Version 5.21 Generated: 8/31/2007 1:45 PM | TWO-WAY STOP CONTROL SUMMARY | | | | | | | | | | |---|--|---|--|--|--|--|--|--|--| | General Information | | Site Information | | | | | | | | | Analyst
Agency/Co.
Date Performed
Analysis Time Period | J. Gormley
TPG Consulting, Inc.
6/13/2007
Existing summer weekend | Intersection Jurisdiction Analysis Year | Avila Beach Drive at San Luis
County of SLO
2007 | | | | | | | | Project Description 06-1 | 052 Avila Circulation Element | | | | | | | | | | East/West Street: Avila B | each Drive | North/South Street: Sa | an Luis Street | | | | | | | | Intersection Orientation: | East-West | Study Period (hrs): 0.2 | 25 | | | | | | | | Vehicle Volumes and | Adjustments | | | | | | | | | | Vehicle Volumes and | Adjustments | | | | | | | |-------------------------------|-------------|------------|------|------|------------|------|--| | Major Street | | Eastbound | | | Westbound | | | | Movement | 1 | 2 | 3 | 4 | 5 | 6 | | | | L | Т | R | L | T | R | | | Volume (veh/h) | | 700 | 5 | 31 | 161 | | | | Peak-Hour Factor, PHF | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | | Hourly Flow Rate, HFR (veh/h) | 0 | 760 | 5 | 33 | 174 | 0 | | | Percent Heavy Vehicles | 0 | | | 2 | | | | | Median Type | | Undivided | | | | | | | RT Channelized | | | 0 | | | 0 | | | Lanes | 0 | 1 | 0 | 1 | 1 | 0 | | | Configuration | | | TR | L | T | | | | Upstream Signal | | 0 | | | 0 | | | | Minor Street | | Northbound | | | Southbound | | | | Movement | 7 | 8 | 9 | 10 | 11 | 12 | | | | L | T | R | L | T | R | | | Volume (veh/h) | 1 | | 24 | | | | | | Peak-Hour Factor, PHF | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | | Hourly Flow Rate, HFR (veh/h) | 1 | 0 | 26 | 0 | 0 | 0 | | | Percent Heavy Vehicles | 2 | 0 | 2 | 0 | 0 | 0 | | | Percent Grade (%) | | 0 | | | 0 | | | | Flared Approach | | N | | | N | | | | Storage | | 0 | | | 0 | | | | RT Channelized | | | 0 | | | 0 | | | Lanes | 1 | 0 | 1 | 0 | 0 | 0 | | | Configuration | L | | R | | | | | | nd Level of Serv | rice | | | | | | | |------------------|-------------|------------------------------|---|--|---|---|--| | Eastbound | Westbound | | Northbound | d | Southbound | | | | 1 | 4 | 7 | 8 | 9 | 10 | 11 | 12 | | | L | L | | R | | | | | | 33 | 1 | | 26 | | | | | | 848 | 259 | | 405 | | | | | | 0.04 | 0.00 | | 0.06 | | | | | | 0.12 | 0.01 | | 0.20 | | | | | | 9.4 | 19.0 | | 14.5 | | | | | | Α | С | | В | | | | | | | | 14.7 | , | | • | • | | | | | В | | | | | | | Eastbound 1 | 1 4 L 33 848 0.04 0.12 9.4 A | Eastbound Westbound 1 4 7 L L 33 1 848 259 0.04 0.00 0.12 0.01 9.4 19.0 A C | Eastbound Westbound Northbound 1 4 7 8 L L L 33 1 33 1 848 259 0.04 0.00 0.12 0.01 0.01 0.01 9.4 19.0 4 C 14.7 | Eastbound Westbound Northbound 1 4 7 8 9 L L L R 33 1 26 848 259 405 0.04 0.00 0.06 0.12 0.01 0.20 9.4 19.0 14.5 A C B 14.7 | Eastbound Westbound Northbound S 1 4 7 8 9 10 L L L R 33 1 26 | Eastbound Westbound Northbound Southbound 1 4 7 8 9 10 11 L L L R 10 11 33 1 26 10 10 10 848 259 405 10 </td | HCS+TM Version 5.21 Generated: 8/31/2007 1:45 PM | | TW | O-WAY STOP (| CONTROL S | UMMARY | | | | |-------------------------------|-------------------|------------------|--------------|-----------------|----------------|-------------------|--| | General Information | | | Site Inform | nation | | | | | Analyst | J. Gormley | | Intersection | | Avila Beach at | ach at San Miguel | | | Agency/Co. | TPG Consu | ılting, Inc. | Jurisdiction | | County of SLO | | | | Date Performed | 6/13/2007 | | Analysis Yea | ar | 2007 | | | | Analysis Time Period | Existing no | n summer weekday | , | | | | | | Project Description 06-10 | 052 Avila Circula | tion Element | <u>.</u> | | | | | | East/West Street: Avila Be | | | North/South | Street: San Mig | guel Street | | | | Intersection Orientation: E | East-West | | Study Period | (hrs): 0.25 | | | | | Vehicle Volumes and | Adjustments | 3 | | | | | | | Major Street | | Eastbound | Westbound | | | | | | Movement | 1 | 2 | 3 | 4 | 5 | 6 | | | | L | T | R | L | T | R | | | Volume (veh/h) | | 645 | 1 | 13 | 137 | | | | Peak-Hour Factor, PHF | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | | Hourly Flow Rate, HFR (veh/h) | 0 | 701 | 1 | 14 | 148 | 0 | | | Percent Heavy Vehicles | 0 | | | 2 | | | | | Median Type | | | Und | livided | | | | | RT Channelized | | | 0 | | | 0 | | | Lanes | 0 | 1 | 0 | 1 | 1 | 0 | | | Configuration | | | TR | L | T | | | | Upstream Signal | | 0 | | | 0 | | | | Minor Street | | Northbound | | | Southbound | | | | Movement | 7 | 8 | 9 | 10 | 11 | 12 | | | | L | T | R | L | Т | R | | | Valuma (vah/h) | 0 | i | 11 | | ĺ | ĺ | | | Opstream Signal | | | ļ | | <u> </u> | | | |-------------------------------|------|------------|------|------|------------|------|--| | Minor Street | | Northbound | | | Southbound | | | | Movement | 7 | 8 | 9 | 10 | 11 | 12 | | | | L | T | R | L | T | R | | | Volume (veh/h) | 0 | | 44 | | j | | | | Peak-Hour Factor, PHF | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | | Hourly Flow Rate, HFR (veh/h) | 0 | 0 | 47 | 0 | 0 | 0 | | | Percent Heavy Vehicles | 2 | 0 | 2 | 0 | 0 | 0 | | | Percent Grade (%) | | 0 | | 0 | | | | | Flared Approach | | N | | | N | | | | Storage | | 0 | | | 0 | | | | RT Channelized | | | 0 | | | 0 | | | Lanes | 1 | 0 | 1 | 0 | 0 | 0 | | | Configuration | L | | R | | | | | | Delay, Queue Length, ar | nd Level of Serv | rice | | | | | | | | |-------------------------|------------------|-----------|------|------------|------|----|------------|----|--| | Approach | Eastbound | Westbound | | Northbound | | S | Southbound | | | | Movement | 1 | 4 | 7 | 8 | 9 | 10 | 11 | 12 | | | Lane Configuration | | L | L | | R | | | | | | v (veh/h) | | 14 | 0 | | 47 | | | | | | C (m) (veh/h) | | 895 | 313 | | 438 | | | | | | v/c | | 0.02 | 0.00 | | 0.11 | | | | | | 95% queue length | | 0.05 | 0.00 | | 0.36 | | | | | | Control Delay (s/veh) | | 9.1 | 16.5 | | 14.2 | | | | | | LOS | | Α
| С | | В | | | | | | Approach Delay (s/veh) | | | | 14.2 | • | | | • | | | Approach LOS | | | | В | | | | | | HCS+TM Version 5.21 Generated: 8/31/2007 1:46 PM | TWO-WAY STOP CONTROL SUMMARY | | | | | | | | | | |---|--|---|--|--|--|--|--|--|--| | General Information | | Site Information | | | | | | | | | Analyst
Agency/Co.
Date Performed
Analysis Time Period | J. Gormley
TPG Consulting, Inc.
6/13/2007
Existing summer weekend | Intersection Jurisdiction Analysis Year | Avila Beach at San Miguel
County of SLO
2007 | | | | | | | | Project Description 06-10 | 052 Avila Circulation Element | · | | | | | | | | | East/West Street: Avila Be | each Drive | North/South Street: San Miguel Street | | | | | | | | | Intersection Orientation: East-West Study Period (hrs): 0.25 | | | | | | | | | | | Vehicle Volumes and | Adjustments | 3 | | | | | |-------------------------------|-------------|------------|------|---------|------------|------| | Major Street | | Eastbound | | | Westbound | | | Movement | 1 | 2 | 3 | 4 | 5 | 6 | | | L | Т | R | L | T | R | | Volume (veh/h) | | 673 | 1 | 14 | 143 | | | Peak-Hour Factor, PHF | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | Hourly Flow Rate, HFR (veh/h) | 0 | 731 | 1 | 15 | 155 | 0 | | Percent Heavy Vehicles | 0 | | | 2 | | | | Median Type | | , | Und | divided | , | , | | RT Channelized | | | 0 | | | 0 | | Lanes | 0 | 1 | 0 | 1 | 1 | 0 | | Configuration | | | TR | L | T | | | Upstream Signal | | 0 | | | 0 | | | Minor Street | | Northbound | | | Southbound | | | Movement | 7 | 8 | 9 | 10 | 11 | 12 | | | L | Т | R | L | Т | R | | Volume (veh/h) | 0 | | 46 | | | | | Peak-Hour Factor, PHF | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | Hourly Flow Rate, HFR (veh/h) | 0 | 0 | 49 | 0 | 0 | 0 | | Percent Heavy Vehicles | 2 | 0 | 2 | 0 | 0 | 0 | | Percent Grade (%) | | 0 | | | 0 | | | Flared Approach | | N | | | N | | | Storage | | 0 | | | 0 | | | RT Channelized | | | 0 | | | 0 | | Lanes | 1 | 0 | 1 | 0 | 0 | 0 | | Configuration | L | | R | | | | | nd Level of Serv | rice | | | | | | | | |------------------|----------------|------------------------------|---|--|---|--|--|--| | Eastbound | Westbound | | Northbound | | | Southbound | | | | 1 | 4 | 7 | 8 | 9 | 10 | 11 | 12 | | | | L | L | | R | | | | | | | 15 | 0 | | 49 | | | | | | | 873 | 297 | | 421 | | | | | | | 0.02 | 0.00 | | 0.12 | | | | | | | 0.05 | 0.00 | | 0.39 | | | | | | | 9.2 | 17.1 | | 14.7 | | | | | | | Α | С | | В | | | | | | | | | 14.7 | | | | , | | | | | | В | | | | | | | | Eastbound
1 | 1 4 L 15 873 0.02 0.05 9.2 A | Eastbound Westbound 1 4 7 L L 15 0 873 297 0.02 0.00 0.05 0.00 9.2 17.1 A C | Eastbound Westbound Northbound 1 4 7 8 L L L 15 0 0 873 297 0.00 0.02 0.00 0.00 9.2 17.1 A C 14.7 | Eastbound Westbound Northbound 1 4 7 8 9 L L R 15 0 49 873 297 421 0.02 0.00 0.12 0.05 0.00 0.39 9.2 17.1 14.7 A C B 14.7 | Eastbound Westbound Northbound S 1 4 7 8 9 10 L L L R 10 | Eastbound Westbound Northbound Southbound 1 4 7 8 9 10 11 L L L R 15 0 49 49 49 421 0.02 0.00 0.12 0.012 0.012 0.012 0.05 0.00 0.39 0.39 0.00 0 | | HCS+TM Version 5.21 Generated: 8/31/2007 1:46 PM | | TWO | O-WAY STOP | CONTROL S | UMMARY | | | | |---|--|--------------|--------------|------------------|------------|---|--| | General Information | | | Site Inforn | nation | | | | | Analyst
Agency/Co.
Date Performed
Analysis Time Period | J. Gormley
TPG Consulting, Inc.
6/13/2007
Existing non summer weekday | | | | | Avila Beach at First
County of SLO
2007 | | | , , | 52 Avila Circulat | tion Element | | | | | | | East/West Street: Avila Beach Drive | | | _ | Street: First St | reet | | | | Intersection Orientation: E | ast-West | | Study Period | (hrs): 0.25 | | | | | Vehicle Volumes and | Adjustments | ; | | | | | | | Major Street | | Eastbound | | | Westbound | | | | Movement | 1 | 2 | 3 | 4 | 5 | 6 | | | | L | Т | R | L | Т | R | | | Volume (veh/h) | | 622 | 37 | 20 | 117 | | | | Peak-Hour Factor, PHF | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | | Hourly Flow Rate, HFR
(veh/h) | 0 | 676 | 40 | 21 | 127 | 0 | | | Percent Heavy Vehicles | 0 | | | 2 | | | | | Median Type | | , | Una | livided | · | • | | | RT Channelized | | | 0 | | | 0 | | | Lanes | 0 | 1 | 0 | 1 | 1 | 0 | | | Configuration | | | TR | L | T | | | | Upstream Signal | | 0 | | | 0 | | | | Minor Street | | Northbound | | | Southbound | | | | Movement | 7 | 8 | <u> </u> | 10 | 11 | 12 | | | Minor Street | | Northbound | | Southbound | | | | |-------------------------------|------|------------|------|------------|------|------|--| | Movement | 7 | 8 | 9 | 10 | 11 | 12 | | | | L | Т | R | L | Т | R | | | Volume (veh/h) | 18 | | 24 | | | | | | Peak-Hour Factor, PHF | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | | Hourly Flow Rate, HFR (veh/h) | 19 | 0 | 26 | 0 | 0 | О | | | Percent Heavy Vehicles | 2 | 0 | 2 | 0 | 0 | 0 | | | Percent Grade (%) | | 0 | , | 0 | | | | | Flared Approach | | N | | | N | | | | Storage | | 0 | | | 0 | | | | RT Channelized | | | 0 | | | 0 | | | Lanes | 1 | 0 | 1 | 0 | 0 | 0 | | | Configuration | L | | R | | | | | | Dalam Onema Lameth and | | | | | | | | | Delay, Queue Length, ar | nd Level of Serv | ice | | | | | | | | |-------------------------|------------------|-----------|------|------------|------|----|------------|----|--| | Approach | Eastbound | Westbound | | Northbound | | S | Southbound | | | | Movement | 1 | 4 | 7 | 8 | 9 | 10 | 11 | 12 | | | Lane Configuration | | L | L | | R | | | | | | v (veh/h) | | 21 | 19 | | 26 | | | | | | C (m) (veh/h) | | 885 | 316 | | 442 | | | | | | v/c | | 0.02 | 0.06 | | 0.06 | | | | | | 95% queue length | | 0.07 | 0.19 | | 0.19 | | | | | | Control Delay (s/veh) | | 9.2 | 17.1 | | 13.7 | | | | | | LOS | | Α | С | | В | | | | | | Approach Delay (s/veh) | | | | 15.1 | | | | | | | Approach LOS | | | | С | | | | | | HCS+TM Version 5.21
Generated: 8/31/2007 1:43 PM | TWO-WAY STOP CONTROL SUMMARY | | | | | | | | | | |---|--|---|---|--|--|--|--|--|--| | General Information | | Site Information | | | | | | | | | Analyst
Agency/Co.
Date Performed
Analysis Time Period | J. Gormley
TPG Consulting, Inc.
6/13/2007
Existing summer weekend | Intersection Jurisdiction Analysis Year | Avila Beach at First
County of SLO
2007 | | | | | | | | Project Description 06-10 | 052 Avila Circulation Element | <u> </u> | | | | | | | | | East/West Street: Avila Be | each Drive | North/South Street: First Street | | | | | | | | | Intersection Orientation: | East-West | Study Period (hrs): 0.2 | 25 | | | | | | | | Vehicle Volumes and Adjustments | | | | | | | | | | | Vehicle Volumes and | Adjustments | 3 | | | | | |-------------------------------|-------------|------------|------|--------|------------|------| | Major Street | | Eastbound | | | Westbound | | | Movement | 1 | 2 | 3 | 4 | 5 | 6 | | | L | Т | R | L | Т | R | | Volume (veh/h) | | 649 | 39 | 21 | 122 | | | Peak-Hour Factor, PHF | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | Hourly Flow Rate, HFR (veh/h) | 0 | 705 | 42 | 22 | 132 | 0 | | Percent Heavy Vehicles | 0 | | | 2 | | | | Median Type | | | Und | ivided | | | | RT Channelized | | | 0 | | | 0 | | Lanes | 0 | 1 | 0 | 1 | 1 | 0 | | Configuration | | | TR | L | T | | | Upstream Signal | | 0 | | | 0 | | | Minor Street | | Northbound | | | Southbound | | | Movement | 7 | 8 | 9 | 10 | 11 | 12 | | | L | T | R | L | Т Т | R | | Volume (veh/h) | 19 | | 25 | | | | | Peak-Hour Factor, PHF | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | Hourly Flow Rate, HFR (veh/h) | 20 | 0 | 27 | 0 | 0 | 0 | | Percent Heavy Vehicles | 2 | 0 | 2 | 0 | 0 | 0 | | Percent Grade (%) | | 0 | , | | 0 | | | Flared Approach | | N | | | N | | | Storage | | 0 | | | 0 | | | RT Channelized | | | 0 | | | 0 | | Lanes | 1 | 0 | 1 | 0 | 0 | 0 | | Configuration | L | | R | | | | | nd Level of Serv | rice | | | | | | | | |------------------|--------------|------------------------------|--|---|--|---|---|--| | Eastbound | Westbound | | Northbound | | | Southbound | | | | 1 | 4 | 7 | 8 | 9 | 10 | 11 | 12 | | | | L | L | | R | | | | | | | 22 | 20 | | 27 | | | | | | | 861 | 300 | | 425 | | | | | | | 0.03 | 0.07 | | 0.06 | | | | | | | 0.08 | 0.21 | | 0.20 | | | | | | | 9.3 | 17.9 | | 14.0 | | | | | | | Α | С | | В | | | | | | | | | 15.7 | | | | | | | | | | С | | | | | | | | Eastbound 1 | 1 4 L 22 861 0.03 0.08 9.3 A | Eastbound Westbound 1 4 7 L L L 22 20 861 300 0.03 0.07 0.08 0.21 9.3 17.9 A C | Eastbound Westbound Northbound 1 4 7 8 L L L 22 20 861 300 0.03 0.07 0.07 0.08 0.21 9.3 17.9 A C 15.7 | Eastbound Westbound Northbound 1 4 7 8 9 L L L R 22 20 27 861 300 425 0.03 0.07 0.06 0.08 0.21 0.20 9.3 17.9 14.0 A C B 15.7 | Eastbound Westbound Northbound S 1 4 7 8 9 10 L L L R 27 861 300 425 300 425 0.03 0.07 0.06 0.06 0.00 0.08 0.21 0.20 0.20 0.20 9.3 17.9 14.0 14.0 14.0 A C B 15.7 | Eastbound Westbound Northbound Southbound 1 4 7 8 9 10 11 L L L R 10 11 22 20 27 27 27 27 861 300 425 300 425 300 300 425 300 | | HCS+TM Version 5.21 Generated: 8/31/2007 1:44 PM # APPENDIX C # **EXISTING CONDITIONS** # PEAK HOUR SIGNAL WARRANTS ### Signal Warrants - Existing | | | Approach Lanes | | Peak Hour Volumes | | | |--|--------------|----------------|--------------|----------------------------|---------------------------|---------------| | Intersections | Warrant Type | Major Street | Minor Street | Major Streets ¹ | Minor Street ² | Meets Warrant | | Avila Beach Drive at San Luis Street Non summer | Rural | 1 | 1 | 859 | 24 | No | | Aviia beach brive at San Luis Street Summer | Rural | 1 | 1 | 897 | 25 | No | | Avila Beach Drive at San Miguel Street | Rural | 1 | 1 | 796 | 44 | No | | Aviia Beach Drive at San Miguel Street summer | Rural | 1 | 1 | 831 | 46 | No | | Avila Beach Drive at 1st Street Non summer | Rural | 1 | 1 | 796 | 42 | No | | Aviid beach Drive at 15t Street summer | Rural | 1 | 1 | 831 | 44 | No | | Avila Beach at San Luis Bay Street 2006 Non summer | Rural | 1 | 1 | 840 | 136 | Yes | | Aviid bedcit at Sait Luis Bay Street 2006 | Rural | 1 | 1 | 877 | 142 | Yes | Urban = California MUTCD, Figure 4C-3 Rural = California MUTCD, Figure 4C-4 Inlcudes both directions Includes higher volume direction only # APPENDIX D CAVE LANDING ROAD FEASIBILITY STUDY #### **Cave Landing Road - Emergency Access** County of San Luis Obispo, California #### **Alternative Overview** Based on Fugro's October 17, 2007 Preliminary Geotechnical Report five structures types were considered, evaluated and rated. The structures are a bridge-viaduct, soldier pile wall, retaining wall, mass grading, and a land bridge. The factors considered were, estimated cost, environmental impact, maintenance, and performance. The two key factors being estimated cost and environmental impact. Each factor was given a rating from 1 to 10, 10 being the best. The ratings were then totaled and each structure given an average rating. The results are as follows: | | Estimated
Cost* | Environmental
Impact | Maintenance | Performance | Average
Rating | |----------------------|--------------------|-------------------------|-------------|-------------|-------------------| | Bridge-
Viaduct | 4 | 9 | 9 | 9 | 7.75 | | Solider Pile
Wall | 5 | 7 | 7 | 8 | 6.75 | | Retaining
Wall | 6 | 5 | 8 | 6 | 6.25 | | Mass
Grading | 6 | 2 | 8 | 8 | 6.00 | | Land
Bridge | 9 | 7 | 6 | 5 | 6.75 | ^{*}preliminary estimates attached, based on County and Cal-Trans contract cost data The Bridge-Viaduct's estimated 2007 cost is the most at \$19,022,000.00; its site disturbance is the least due the relatively small amount of peers needed to support the structure. It is virtually maintenance free, and will perform for 80 years. The Solider Pile Wall 2007 cost is estimated at \$17,707,000.00; its site disturbance is moderate, the asphalt roadway and timer lagging will require maintenance, and will perform well. The retaining walls 2007 cost is estimated at \$14,419,000.00; its site disturbance is more than the soldier pile wall, the asphalt roadway will require maintenance and the wall may creep lowering its performance. The Mass Grading 2007 cost is estimated at \$14,960,000; its site disturbance would be very large in comparison to the other alternatives, the asphalt roadway will require maintenance and the re-compacted fill may have settlement problem lowering its performance. The Land Bridge 2007 cost is the is estimated at \$4,134,000.00; its site disturbance is moderate, the asphalt roadway will require maintenance, and the performance is very low due the possibility of total soil failure. In conclusion, based on environmental impact, performance, and maintenance the Bridge-Viaduct is recommended. Dan Erdman P.E. Department of Public Works ### Bridge Viaduct Preliminary Cost Estimate | Item | Approximate | Unit of | Unit | Total | |------------------
-------------|---------|----------------|-----------------------| | Description | Quantity | Measure | Price | | | Description | Quantity | Measure | FILLE | Amount | | Dridge | 40000 | 0.5 | 0000.00 | 044040000 | | Bridge | 46800 | S.F. | \$300.00 | \$14,040,000.00 | | | | | | | | Design | Lump Sum | L.S. | \$500,000.00 | \$500,000.00 | | | | | | | | Inspection | Lump Sum | L.S. | \$500,000.00 | \$500,000.00 | | | | | | | | Environmental | Lump Sum | L.S. | \$1,500,000.00 | \$1,500,000.00 | | | | | | | | Administration | Lump Sum | L.S. | \$200,000.00 | \$200,000.00 | | | <u></u> | | ,, | 4200,000.00 | | Sub Total | | | | \$16,540,019.00 | | July 10tal | | | | Ψ10,540,019.00 | | Contingency 15% | | | | #2 404 002 0 5 | | Contingency 1076 | | | | \$2,481,002.85 | | Total in 2007 | | | | 040 004 004 0 | | Total in 2007 | | | | \$19,021,021.85 | | | | | | | | Total in 2012 | | | | \$22,050,577.50 | | | | | | | | Total in 2017 | | | | \$25,562,662.82 | ^{* 3%} inflation per year #### Soldier Pile Wall Preliminary Cost Estimate | Item | Approximate | Unit of | Unit | Total | |------------------|-------------|---------|----------------|-----------------| | Description | Quantity | Measure | Price | Amount | | Wall | 72000 | S.F. | \$170.00 | \$12,240,000.00 | | Guardrail | 1800 | L.F. | \$35.00 | \$63,000.00 | | Dike | 3600 | L.F. | \$3.50 | \$12,600.00 | | Drainage | Lump Sum | L.S. | \$250,000.00 | \$250,000.00 | | Asphalt Concrete | 915 | Ton | \$90.00 | \$82,350.00 | | Aggregate Base | 1250 | C.Y. | \$40.00 | \$50,000.00 | | Design | Lump Sum | L.S. | \$500,000.00 | \$500,000.00 | | Inspection | Lump Sum | L.S. | \$500,000.00 | \$500,000.00 | | Environmental | Lump Sum | L.S. | \$1,500,000.00 | \$1,500,000.00 | | Administration | Lump Sum | L.S. | \$200,000.00 | \$200,000.00 | | Sub Total | | | | \$15,397,950.00 | | Contingency 15% | | | | \$2,309,692.50 | | Total in 2007 | | | | \$17,707,642.50 | | Total in 2012 | | | | \$20,528,010.87 | | Total in 2017 | | | | \$23,797,590.80 | ^{* 3%} inflation per year #### Retaining Wall Preliminary Cost Estimate | Item | Approximate | Unit of | Unit | Total | |------------------|-------------|---------|----------------|-----------------| | Description | Quantity | Measure | Price | Amount | | Concrete | 7000 | C.Y. | \$500.00 | \$3,500,000.00 | | Guardrail | 1800 | L.F. | \$35.00 | \$63,000.00 | | Excavation | 84000 | C.Y. | \$70.00 | \$5,880,000.00 | | Dike | 3600 | L.F. | \$3.50 | \$12,600.00 | | Drainage | Lump Sum | L.S. | \$250,000.00 | \$250,000.00 | | Asphalt Concrete | 915 | Ton | \$90.00 | \$82,350.00 | | Aggregate Base | 1250 | C.Y. | \$40.00 | \$50,000.00 | | Design | Lump Sum | L.S. | \$500,000.00 | \$500,000.00 | | Inspection | Lump Sum | L.S. | \$500,000.00 | \$500,000.00 | | Environmental | Lump Sum | L.S. | \$1,500,000.00 | \$1,500,000.00 | | Administration | Lump Sum | L.S. | \$200,000.00 | \$200,000.00 | | Sub Total | | | | \$12,537,950.00 | | Contingency 15% | | | | \$1,880,692.50 | | Total in 2007 | | | | \$14,418,642.50 | | Total in 2012 | | | | \$16,715,158.44 | | Total in 2017 | | | | \$19,377,449.82 | ^{* 3%} inflation per year #### Mass Grading Preliminary Cost Estimate | Item | Approximate | Unit of | Unit | Total | |------------------|-------------|---------|----------------|-----------------| | Description | Quantity | Measure | Price | Amount | | Excavation | 500000 | C.Y. | \$20.00 | \$10,000,000.00 | | Guardrail | 1800 | L.F. | \$35.00 | \$63,000.00 | | Dike | 3600 | L.F. | \$3.50 | \$12,600.00 | | Drainage | Lump Sum | L.S. | \$250,000.00 | \$250,000.00 | | Asphalt Concrete | 915 | Ton | \$90.00 | \$82,350.00 | | Aggregate Base | 1250 | C.Y. | \$40.00 | \$50,000.00 | | Design | Lump Sum | L.S. | \$350,000.00 | \$350,000.00 | | Inspection | Lump Sum | L.S. | \$500,000.00 | \$500,000.00 | | Environmental | Lump Sum | L.S. | \$1,500,000.00 | \$1,500,000.00 | | Administration | Lump Sum | L.S. | \$200,000.00 | \$200,000.00 | | Sub Total | | | | \$13,007,950.00 | | Contingency 15% | | | | \$1,951,192.50 | | Total in 2007 | | | | \$14,959,142.50 | | Total in 2012 | | | | \$17,341,746.07 | | Total in 2017 | | | | \$20,103,836.63 | ^{* 3%} inflation per year #### Land Bridge Preliminary Cost Estimate | Item | Approximate | Unit of | Unit
Price | Total
Amount | |-----------------|-------------|---------|----------------|-----------------| | Description | Quantity | Measure | Price | Amount | | Pile | 3,600 | L.F. | \$200.00 | \$720,000.00 | | Excavation | 20,000 | C.Y. | \$20.00 | \$400,000.00 | | Guardrail | 1,800 | L.F. | \$35.00 | \$63,000.00 | | Drive Pile | 72 | E.A. | \$1,000.00 | \$72,000.00 | | Drainage | Lump Sum | L.S. | \$250,000.00 | \$250,000.00 | | Concrete | 1,730 | C.Y. | \$185.00 | \$320,050.00 | | Steel | 234,000 | L.B. | \$1.15 | \$269,100.00 | | Design | Lump Sum | L.S. | \$200,000.00 | \$200,000.00 | | Inspection | Lump Sum | L.S. | \$500,000.00 | \$500,000.00 | | Environmental | Lump Sum | L.S. | \$1,000,000.00 | \$1,000,000.00 | | Administration | Lump Sum | L.S. | \$200,000.00 | \$200,000.00 | | Sub Total | | | | \$3,594,150.00 | | Contingency 15% | | | | \$539,122.50 | | Total in 2007 | | | | \$4,133,272.50 | | Total in 2012 | : | | | \$4,791,595.65 | | Total in 2017 | | | | \$5,554,772.61 | ^{* 3%} inflation per year # PRELIMINARY GEOTECHNICAL REPORT CAVE LANDING ROAD-BLUFF DRIVE EMERGENCY ACCESS SAN LUIS OBISPO COUNTY, CALIFORNIA Prepared for: County of San Luis Obispo Department of Public Works October 17, 2007 #### **FUGRO WEST, INC.** 660 Clarion Court, Suite A San Luis Obispo, California 93401 Tel: (805) 542-0797 Fax: (805) 542-9311 October 17, 2007 Project No. 3014.028 County of San Luis Obispo County Government Center, Room 207 San Luis Obispo, California 93408 Attention: Mr. Dan Erdman Subject: Preliminary Foundation Report, Cave Landing-Bluff Drive Emergency Access, Avila Beach, San Luis Obispo County, California Dear Mr. Erdman: Fugro is pleased to submit this Preliminary Geotechnical Report for the emergency access road improvements at Cave Landing. This report was prepared as authorized by the County Blanket Purchase Order No. 25003625 dated June 26, 2007. The purpose of this report is to provide geotechnical input for the initial planning and structure type selection process to create an emergency access route to connect Cave Landing Road to Bluff Drive in Pismo Beach. This report provides a summary of geotechnical considerations that could impact the project (mainly landsliding), and discusses geotechnical alternatives that could be used to help create the emergency access route based on review of existing data. The active landsliding along the alignment is likely to impact the design of the access route, and result in a relatively complex and expensive design. On the basis of our data and site visit, we have provided a summary of the site geology, subsurface conditions, seismicity, and preliminary foundation considerations. Please contact the undersigned if you have questions or we can be of additional service. Sincerely, FUGRO WEST, Johathan D. Blanchard, GÈ Principal Geotechnical Engineer Copies: 4-addressee (1 CD ROM) #### CONTENTS | 1. | PROJECT UNDERSTANDING1 | | |---------------------------------|---|--------------------------------------| | 2. | WORK PERFORMED 1 2.1 PURPOSE AND SCOPE 1 2.2 PREVIOUS STUDIES 2 2.3 GENERAL CONDITIONS 2 | | | 3. | GEOTECHNICAL CONSIDERATIONS3 | | | 4.5. | PRELMINARY ALTERNATIVES 5 4.1 DO NOTHING 5 4.2 RETAINING STRUCTURES 6 4.2.1 Conventional Retaining Wall or Reinforced Earth 6 4.2.2 Sheetpile 7 4.2.3 Tieback and/or Soldier Pile Retaining Wall 7 4.3 GRADED CUT AND FILL 7 4.4 DRAINAGE 8 4.4.1 Surface Drainage 8 4.4.2 Subsurface Drainage 9 4.5 STRUCTURALLY SUPPORTED ROADWAY 9 4.5.1 Land Bridge 9 4.5.2 Viaduct 10 ADDITIONAL SERVICES 10 | | | 6. | REFERENCES | | | | LIST OF PLATES | | | | Plate | | | | Vicinity Map Site Plan Existing Condition Retaining Wall Concept Soldier Pile and Tieback Wall Concept Graded Cut and Fill Concept Land Bridge Concept Viaduct Concept | 1
2
3
4
5
6
7
8 | #### 1. PROJECT UNDERSTANDING The project generally consists of constructing an emergency access route between the existing termini of Cave Landing Road in Avila Beach and Bluff Drive in Pismo Beach. The road will be developed along a coastal route within existing County right-of-way. The location of the site is shown on Plate 1, Vicinity Map. Cave Landing Road previously extended along the proposed alignment to Bluff Drive. The County has closed the roadway in response to landsliding that impacted the existing route and extended across the right-of-way. The closed portion of the route is approximately 1,600 feet long. This project would reestablish the route to provide emergency access, and would be funded by PG&E for Diablo Canyon. We understand from the County that the route could also be used as a recreational trail for pedestrian and bicycle traffic. The access will be paved and be at least 24 feet wide. The surrounding terrain generally consists of a marine terrace located along the base of a south-facing hillside and the Pacific Ocean. The route extends along the marine terrace above steep slopes and bluffs that overlook the beach at Pirates Cove. The existing sit grades range from approximately elevation (el.) 166 feet at the parking lot on Cave Landing Road, to
approximately el. 194 feet at the high point of the alignment, to el. 125 feet at the cul-de-sac on Bluff Drive. The bluff along the subject route is relatively unstable as a result of active coastal landsliding and erosion. We understand that the County anticipates that structural improvements such as a retaining structure, bridge, or viaduct will be needed to traverse the unstable areas and to mitigate landslide hazards. #### 2. WORK PERFORMED #### 2.1 PURPOSE AND SCOPE The purpose of this report is to provide preliminary geotechnical considerations for the design of an emergency access route that will connect Cave Landing Road to Bluff Drive. As a basis for providing the preliminary geotechnical recommendations presented in this report, we have performed the following scope of work: - 1. Visiting the site on August 1, 2007 with Mr. Dan Erdman of the County to observe the alignment and review geologic conditions at the site; - 2. Reviewing selected geotechnical information from our in-house files that we previously compiled for the County Planning and Parks Departments regarding the proposed land development and bike trail in this area; - 3. Preparing this letter report to provide a summary of the geotechnical conditions at the site, the characteristics of landsliding at the site and how it could impact the project, coastal erosion and estimated retreat, geotechnical alternatives to create the emergency access, and geotechnical considerations for the design of the project. The main alternatives that we evaluated are: - a. Do nothing; - Use of retaining structures (such as, gravity, soldier pile, sheet piles, tiebacks, MSE walls, geosynthetics) to retain the slope and provide stability for the roadway; - c. Graded slopes with conventional cut and fill to support the roadway; - d. Slope stabilization with surface and subsurface drains; - e. Provide a bridge or structurally supported roadway across the main landslide areas; or - f. A combination or modification of the above #### 2.2 PREVIOUS STUDIES We have reviewed and bee a part of various previous geotechnical studies performed in the project area. The key studies that we reviewed for the project are work by Cotton, Shires & Associates (CSA 2004a, 2004b, 2003). Fugro reviewed the slope stability analyses performed by CSA for the County Planning Department. Fugro (2004, 2005) also provided geotechnical services for the County Parks and Recreation Department to evaluate alternatives for creating a bike and pedestrian trail through the site. CSA performed geologic mapping and slope stability analysis for a residential land development project that was proposed at the Pirates Cove site, and to replace a more limited study performed by GeoSolutions (2003). The GeoSolutions study provides various background geologic maps prepared by England & Associates, the Morro Group, and Cleath & Associates. These studies provide varying interpretations regarding the site geology, faulting, bluff retreat and geotechnical considerations that impact the site. #### 2.3 GENERAL CONDITIONS This report is preliminary and is not intended to be used for final design or construction. Fugro prepared the conclusions, recommendations, and professional opinions of this report in accordance with the generally accepted geotechnical principles and practices at this time and location. This warranty is in lieu of all other warranties, either expressed or implied. This report was prepared for the exclusive use of the County of San Luis Obispo and their authorized agents only. It is not intended to address issues or conditions pertinent to other parties or for other uses. Our characterization of the subsurface and surface conditions is based on observations and explorations performed at specific locations, and the interpolation and extrapolation of data between points of exploration and testing. The boundaries and extent of the subsurface conditions described will vary between points of exploration, and transitions can be gradual. The subsurface soil and groundwater conditions will vary between points of exploration and observation, may change with time, and should be reviewed based on the conditions revealed during design and construction. #### 3. GEOTECHNICAL CONSIDERATIONS The following is a summary of the main geotechnical considerations that are likely to impact the design, construction and operation of the emergency access route. The characterization of these considerations is based on review of limited existing information, and will need to be updated for design. 1. The existing County right-of-way along the proposed access road is located on a marine terrace, approximately 120 to 200 feet above the beach at Pirates Cove (see Plate 2). The geologic conditions along the alignment generally consist of surficial soil units of colluvium (Qcol) and terrace deposits (Qt) that overly bedrock units of Obispo Tuff (Tmo, Tmor) and Monterey Formation (Tmm). The marine terrace has been displaced by active landslide deposits (Qls) that extend onto or below the beach at Pirates Cove. The bedrock units exposed along the south-facing hillside upslope of the alignment have been displaced by older landslides (Qoa) and/or faulting. Resistant units of the Obispo Formation (Tmor) crop out south of the access road, and form a prominent point and seacliff (Mallagh Landing) that shelter Pirates Cove from the predominating northwest winter swells. The site geology presents a relatively complex geotechnical environment that should be considered in selecting an appropriate design for the access route. The geology, landslide conditions, and bluff retreat are a dynamic coastal environment that will change and will likely need to be continually evaluated relative to slope stability, bluff retreat and coast erosion, earthquakes, and particularly following periods of prolonged or intense rainfall, heavy surf, major storm events, or a combination of these factors. 2. Active landsliding has impacted existing right-of-way along the westerly approximately 600 feet of the alignment. Approximately 20- to 30-foot high, near vertical to steeply sloping scarps associated with the active Pirates Cove Landslide Complex border or encroach into the downslope side of the alignment. The landslide deposits and/or relatively weak bedrock units appear to extend approximately 40 feet or more below the existing ground surface along the right of way. The landslides in this area are active, are likely to continue to migrate upslope, and will likely experience relatively large displacements (10 feet or more) periodically if not mitigated. Tension cracks and smaller scarps are also present upslope of the alignment as shown on Plate 2. The design will need to consider mitigation to stabilize or repair the active landsliding to provide the access that can be maintained. The depth and extent of the landslides will likely require a relatively rigorous and costly mitigation to provide reliable access through this portion of the site. 3. East of the active landsliding, the middle third (approximately 600 feet) of the alignment is located at the high point of the site and along the abandoned alignment of Cave Landing Road. The upslope side of the alignment is bordered by older landslides and colluvium deposits. While landsliding in this vicinity does not appear to be active, grading or excavation that would cut into or undermine the support for the older landslide and colluvium could result in additional slope instability that could impact the access road and slopes upslope of the alignment. Active landsliding (discussed above) and ongoing coastal erosion is encroaching upon the western end of the older landslide deposits, and could eventually remove support from the toe of the older landslides and cause them to reactivate. Structural or graded slope improvements (if proposed in this area) will need to consider the stability of the hillside in the area of the older landslides and may need to consider mitigation to stabilize the landslides depending on the potential impact that instability of the landslides could have on the proposed access road. 4. The project site is within a dynamic coastal environment. Landslide movements and coastal erosion tend to be episodic events and are likely to occur in response to periods of prolonged or intense rainfall, heavy surf, major storm events, or a combination of these factors. We understand that the project is only considering that the access road would be constructed along the existing County right of way, and therefore moving the access road further away from the coastline to provide a greater setback from the bluff is not an option. The impacts of coastal erosion over the life of the project (next 20 years or more) are likely to be secondary impacts resulting from landsliding as discussed previously in this report. Mitigation of coastal erosion and coastal landsliding would be improved by controlling surface drainage; however, aggressive mitigation such as placing rock revetment along the base of the bluff would impact beach access and would likely involve difficult or unfeasible coastal permitting. Beach nourishment, or more passive approaches to mitigating coastal erosion that do not impact beach access, are likely easier to permit; however, the active landsliding that is already occurring above the beach is likely to remain unstable and continue to impact the access road alignment. The concepts presented in this report have therefore focused on improvements that would be performed mainly along the existing right-of-way and away from the beach. - 5. Surface drainage is a key element that impacts slope instability and should be considered in the design of the project. The existing surface drainage along the alignment is poorly controlled. There are 3 predominant drainages along the route that discharge into landslide and/or unstable bluff areas: a culvert that discharges into the landslide complex near the
gate at the Cave Landing Road parking lot, a culvert that discharges beneath the abandoned Cave Landing Road alignment and into the active landslide mass about midway along the alignment, and a spillway type structure that discharges onto the bluff face near the existing terminus of Bluff Drive. Control of surface drainage is recommended for all of the concepts discussed in this report to direct surface water away from landslide areas and slopes. - 6. The groundwater conditions at the site appear complex and are likely influenced by the existing poor surface drainage conditions, faulting within the underlying bedrock, and landsliding. Rising groundwater conditions adversely impact slope stability. Groundwater was reported by CSA (2003) as zones of seepage along joints and shear planes, contacts between geologic units, and along the base of the colluvium or marine terrace deposits. Groundwater was typically encountered at a depth of approximately 40 feet below the existing ground surface. Springs daylight at various locations along the buff. Groundwater conditions will vary seasonally due to changes in runoff, storm conditions, rainfall, and other factors. The various concepts include provisions for subsurface drainage behind retaining structures or from subhorizontal drains. 7. The site is within a seismically active area, has been impacted by strong ground motion from historical earthquakes, and could be again in the future. Based on review of the Caltrans Seismic Hazard Map (Mualchin 1996) the peak bedrock acceleration for the site is about 0.5g. Mualchin shows several faults near the site that are capable of generating a M6.0 to 7.5 earthquake (such as the Hosgri, Oceano, Santa Maria River-Wilmar Avenue, Los Osos faults). The design of structures should consider the affects of strong ground motion in accordance with applicable design guidelines. #### 4. PRELMINARY ALTERNATIVES The following provides a description of the alternatives that were considered to create an emergency access to reconnect the southern terminus of Cave Landing Road in Avila to the northern terminus of Bluff Drive in Shell Beach. These concepts are not intended to be inclusive of all possible alternatives. The most suitable mitigation may be selected for reasons of cost, practical and physical site constraints, aesthetic, simplicity of design or other factors. Various concepts may be better suited for portions of the alignment. The three main segments that should be evaluated are: - 1. The western third of the alignment where approximately 600 feet of the alignment is being undermined or impacted by active landslides; - 2. The middle third of the alignment where approximately 600 feet of the upslope area is underlain by older landslide and colluvium that are marginally stable and could reactivate if not properly supported by the design and during construction; - 3. The eastern third where approximately 600 feet of the existing alignment descends along a relatively constant grade, and active landsliding is occurring downslope of the alignment. These concepts are provided as a basis for subsequent discussions, and evaluation of structure types or concepts for design. This letter and the attached drawings provide concept-level information and should not be used for final design or construction. #### 4.1 DO NOTHING The existing site conditions are summarized on Plate 3. The alignment is potentially unstable as a result of the existing landslide conditions. Active landsliding has impacted the existing alignment, and older landslide deposits are mapped in some areas upslope of the existing alignment. Coastal erosion and poor surface drainage likely contribute to the instability of the site. The existing alignment was closed by the County in response to past landslide movements. Since the route was closed, no site improvements have been performed to mitigate the landslide, surface drainage, or coastal erosion conditions at the site. Instability of the Pirates Cove Landslide Complex has been most common during periods of severe weather (relatively heavy rainfall and high surf). Instability of the landslide tends to be episodic where: portions of the landslide fail to a more stable condition; the debris from the landslide temporarily buttresses that portion of the slope; and other portions of the slope become unstable. The main factors that appear to impact the stability of the slope are: coastal erosion along the Pirates Cove Beach that removes material from the toe of the landslide; poor surface drainage and the resistant tuff (that outcrops along the westerly flank of the main landslide) that promote perched groundwater conditions within the landslide complex. The landslide movement and bluff erosion have resulted in the alignment being bordered by relatively steep to near vertical slopes that show evidence of creep that is impacting the existing alignment, and are potentially unstable. #### 4.2 RETAINING STRUCTURES #### 4.2.1 Conventional Retaining Wall or Reinforced Earth This concept would generally consist of constructing the new access road on a retaining wall that is embedded below the existing roadway and landslide deposits. The type of wall could likely vary and consist of either a concrete cantilever retaining wall, a variety of reinforced earth/mechanically stabilized embankment (MSE) systems, or a geogrid reinforced embankment (GRE). The key elements of this system would be to support the retaining wall on stable ground below the depth of the existing landslide deposits, and to retain the head scarp and areas upslope of the existing landslide with the new earth retention system. A concept for supporting the access road using an MSE wall system is presented on Plate 4. The retaining wall would be relatively high, and would likely need to be embedded about 40 to 50 feet below the existing roadway to provide suitable foundation support for the new retaining wall and extend below the Pirates Cove Landslide Complex. The wall would be designed to support the backslope, upslope of the existing landslide complex. Depending on the stability of the older landslides, this concept may not be feasible where older landslide deposits are mapped upslope of the existing alignment (see Plate 2). Alternative retaining wall types (tieback walls) may need to be used in areas where the existing landslides are mapped upslope of the roadway. The retaining wall would be combined with improved surface and subsurface drainage (similar to the graded slope concept). The existing active landslide deposits downslope of the retaining wall would not be mitigated, and would need to be reviewed periodically to evaluate whether or not continued landslide movements are undermining the support for the wall. This concept would also need to consider whether or not the temporary back cut could be safely excavated to allow for construction of the wall, or would need to be shored to resist additional landslide movements. If the back cut is potentially unstable, relatively elaborate shoring systems (likely tiebacks) would be needed to support the back cut, provide a safe working area for the excavation, and reduce the potential for further or reactivation of landslides upslope of the alignment; particularly if there is a potential for groundwater to be present at the time of construction. #### 4.2.2 Sheetpile Driving sheet piling for a tieback retaining wall is likely not practical due to the relatively hard driving conditions that would be encountered within the underlying bedrock. The sheet piles would need to be driven approximately 40 to 50 feet below the existing roadway to penetrate below the active landslide deposits. Relatively hard driving conditions would likely limit the depth that sheet piles could be driven below the landslide deposits. #### 4.2.3 Tieback and/or Soldier Pile Retaining Wall This concept is similar to the retaining wall concept discussed in the previous section of this report, except that the retaining wall system would include tiebacks and/or deep foundation support to provide additional lateral support for backslope areas that may be prone to landsliding. A soldier pile and tieback type retaining wall could be used to help limit the need for shoring to support the temporary back cut (by using a retaining wall type that can be constructed from the top down and would avoid the need for temporary shoring). This type of wall system may be suitable for portions of the alignment that are likely to be impacted by landsliding because the solider piles and tiebacks can provide greater lateral support than can typically be achieved using a conventional retaining wall or grading. A concept for supporting the access road using a soldier pile and tieback retaining wall is shown on Plate 5. The base of the lagging should be embedded below the existing landslide deposits to reduce the potential for the lagging to be undermined by erosion and landslide movement downslope of the retaining wall. Excavation downslope of the wall would also be needed to allow for installation of the tiebacks (ground anchors drilled slightly downward into the hillside, and grouted in place). Typically, timber lagging will provide a relatively free-draining face for the wall. However, additional subsurface drainage may be needed to help relieve hydrostatic pressures within the landslide and potentially unstable slope areas upslope of the retaining wall. Horizontal drains (a gravity well drilled slightly upward into the hillside) can be relatively easily installed along the base of the wall. Horizontal drains are typically drilled and installed using the same equipment that is used to install tiebacks. #### 4.3 GRADED CUT AND FILL Conventional grading to mitigate landslides and slope instability typically consists of flattening the slope, buttressing the slope with a shear key, or removal of the landslide. To improve the stability of the access road alignment, grading would be
needed to excavate the existing landslide deposits, install subsurface drains, and provide a suitable buttress fill to support the new roadway. A concept for grading the landslide is shown on Plate 6. Grading could be used to improve the stability of the alignment, and to remove a portion of the landslide downslope of the roadway. Grading would include benching the fill into the underlying stable bedrock to provide an earthen buttress/shear key that would resist landslide movement and support the new roadway. The grading would be combined with improved surface and subsurface drainage. The existing landslide deposits downslope of the new embankment would be left in place. Similar to the MSE wall concept, the existing active landslide deposits downslope of the retaining wall would not be mitigated, and would need to be reviewed periodically to evaluate whether or not continued landslide movements are undermining the support for the fill. We understand that grading downslope of the alignment (within the Pirates Cove Landslide Complex) can likely not be performed because of the presence of archeological resources. The grading for this concept could be relatively massive compared with other alternatives: 40 to 50 feet deep and extending 100 feet or more across the alignment. The actual size of the excavation would be estimated for design based on slope stability analyses. The concept would also need to consider whether or not the temporary back cut could be safely excavated to allow for construction of the wall, or would need to be shored to resist additional landslide movements. If the back cut is potentially unstable, relatively elaborate shoring systems (likely tiebacks) would be needed to support the back cut, provide a safe working area for the excavation, and reduce the potential for further or reactivation of landslides upslope of the alignment; particularly if there is a potential for groundwater to be present at the time of construction. #### 4.4 DRAINAGE The stability of the existing landslide and coastal erosion is likely influenced by the poor surface drainage and local groundwater conditions at the site. Because the existing landslides and areas of the slopes adjacent to the route are potentially unstable already, solely improving the site drainage would likely not be sufficient to protect the new access road from being impacted by slope instability. However, drainage improvements should be provided to better control surface and subsurface water as part of the overall project. #### 4.4.1 Surface Drainage Surface drainage improvements should be provided to intercept surface water that is currently flowing into the existing Pirates Cove Landslide Complex or being discharged into unstable bluff areas. Boyle Engineering Corporation (2006) and CSA (2003) have evaluated the existing surface drainage conditions for a bike trail project being evaluated for the San Luis Obispo County Parks and Recreation Department, and for a proposed residential development. During our study with Boyle, it was identified that the outlet points for the surface drainage are of particular interest of the Coast Commission (telephone conference 2007). The control of surface water is an important factor related to instability of the existing sea cliff and landslides. There are 3 predominant drainages along the route that discharge into landslide and/or unstable bluff areas: a culvert that discharges into the landslide complex near the gate at the Cave Landing Road parking lot, a culvert that discharges beneath the abandoned Cave Landing Road alignment and into the active landslide mass about midway along the alignment, and a spillway type structure that discharges onto the bluff face near the existing terminus of Bluff Drive. The outlets of all of these drainages are in areas of the most recent landslide activity and movement. - 1. Water should not be permitted to run uncontrolled into unstable bluff or landslide areas. - 2. Where drainage must run over the seacliff, the drainage should be either carried to the base of the cliff in a solid pipe or lined swale or be directed to more stable areas of the bluff that are underlain by resistant bedrock materials that are less prone to slope instability and erosion. - 3. Some surface water could potentially be directed to existing or improved roadway drainage systems along Cave Landing Road. - 4. The existing drainage along the abandoned Cave Landing Road is relatively poor, and should be reviewed and improved as needed. The main goal would be to collect and properly control surface water along the route that may be impacting the stability of the seacliff or landslides. - 5. If possible, the drainage from the existing spillway type structure on Bluff Drive should be collected and directed to the base of the sea cliff via a solid pipe. Recent erosion and ground cracks are present in this general area. #### 4.4.2 Subsurface Drainage Subsurface drainage would be a component of various alternatives discussed in this report. The main purpose of providing subsurface drainage would be to reduce the potential for hydrostatic (water) pressure to build up behind retaining wall structure or buttress fill, and to help lower groundwater levels in landslide or potentially unstable areas. Subsurface drainage improvements are likely to consist of providing subsurface drains in association with the placement of retaining wall backfill or compacted fill, and by horizontal drains bored into the hillside for selected alternatives. #### 4.5 STRUCTURALLY SUPPORTED ROADWAY #### 4.5.1 Land Bridge This concept would generally consist of constructing a pile-supported roadway along the proposed alignment. The roadway would generally consist of a slab-type structure supported on deep foundations. The deep foundations would likely consist of cast-in-drilled hole (CIDH) pile foundations embedded in the underlying bedrock and below any landslide deposits. The CIDH piles would be designed to resist lateral loads associated with earth pressures and potential slope instability, and to support the structural loads from the bridge. The piles would essentially be designed to help retain the soils and rock upslope of the access road, and to support the access road should landslide movement and coastal erosion encroach upon the new access road. Using a relatively large number of closely spaced piles could allow the piles to act as shear pins and help limit upslope migration of landslides. The concept may need to include tiebacks to help resist landslide movements. The design of a pile supported roadway should consider the potential for the CIDH piles to be exposed in the future, and whether or not the design may require maintenance or evaluation of the structure would be needed. #### 4.5.2 Viaduct This concept would be a similar to the concept of the Land Bridge, except that the viaduct would be supported by a single or series of widely spaced foundations. The viaduct would not be designed to retain soil and rock along the alignment (like the land bridge) but rather would be designed to consider that landslides within the soil and rock could either remove or add lateral pressure to the piles. The piles would likely need to be relatively large (perhaps 8 to 12 feet in diameter) to support the viaduct and resist landslide movements. The resulting viaduct would be a relatively large fly-over type structure, constructed above the unstable ground. The concept may need to include tiebacks to help resist landslide movements. A challenge for the design of this foundation system would be that it is relatively difficult to predict future loading associated with landslide movements. Blocks of rock that may be associated with the landsliding (moving with or floating within the landslide), can apply greater pressures than can be predicted using conventional earth pressure theory. #### 5. ADDITIONAL SERVICES The conclusions and recommendations of this report are preliminary and are subject to revision during the subsequent phases of the project. Embankment and cut slope inclinations as well as design foundation recommendations and seismic design considerations will be provided based on the results of the design level field exploration, laboratory testing, and additional geotechnical evaluation. #### 6. REFERENCES - Boyle Engineering Corporation (2006), *Preliminary Design Report for Cave Landing Bike Path*, unpublished consultant report prepared for San Luis Obispo County Parks, draft dated October. - Cotton, Shires & Associates (2004a), Supplemental Geotechnical Services Slope Stability Analysis, Pirates Cove Development Building Site No. 2, San Luis Obispo County, California, unpublished consultant report prepared for Howard & Howard, Inc., File No. G0133D, dated September 15. - Cotton, Shires & Associates (2004b), Response to County (Fugro) Review Comments, Pirates Cove Development, San Luis Obispo County, California, unpublished consultant report prepared for Howard & Howard, Inc., File No. G0133C, dated September 15 - Cotton, Shires & Associates (2003), Slope Stability Investigation, Pirates Cove Development, Proposed 4-lot Residential Subdivision, San Luis Obispo County, California, unpublished - consultant report prepared for Howard & Howard, Inc., File No. G0133B, dated November 26. - Fugro West, Inc. (2005), *Project Memorandum, Cave Landing Bike Trail*, unpublished consultant report prepared for County of San Luis Obispo, Parks, File No. 3014.016, dated April 21. - Fugro West, Inc. (2004), Summary Geologic Evaluation of Feasible Route for the Cave Landing Pathway between Avila Beach and Shell beach, San Luis Obispo County, California, unpublished consultant report prepared for County of San Luis Obispo, Parks, File No. 3014.011, dated April 21. - GeoSolutions, Inc. (2003), Response to Peer Review Comments, parcels 1-5, COAL 96-036, Cave Landing Road, Avila Beach Area, San Luis Obispo County, California, unpublished consultant
report prepared for Mr. Robert Howard, File No. SLO803-5, dated April 14. - Mualchin, L. (1996), "California Seismic Hazard Map and A Technical Report to Accompany the Caltrans California Seismic Hazard Map 1996 (Based on Maximum Credible Earthquakes), California Department of Transportation Engineering Service Center, Office of Earthquake Engineering, Sacramento, California, June. FEET San Luis Obispo County Project No. 3014.028 Notes: - 1. Section based on geologic conditions as reported by Cotton Shires (2003), Fugro (2004). - 2. Upslope migration of landslide is characterized by Cotton Shires (2003). - 3. Existing surface drainage and culverts discharge directly into landslide area. - 4. There is no deep boring information within existing landslide from previous geotechnical studies. Indicates zone of seepage or groundwater encountered EXISTING CONDITION Cave Landing Road - Bluff Drive Emergency Access San Luis Obispo County, California 1. MSE wall can be proprietary system or designed according to Catrans details. Likely to be built as an equivalent proprietary system. 2. Concept would be similar for concrete or alternative gravity retaining wall systems. 3. Temporary slope is likely to be 1.5:1 or flatter but would need to be estimated from slope stability analysis and/or be supported by shoring. 4. Retaining wall should be supported on firm bedrock materials below the depth of the existing landslide deposits. Other surface drainage, landscape and roadway improvements should also be provided. Conceptual only. All locations and dimensions are approximate. Not for design, estimates, or construction. Cave Landing Road - Bluff Drive RETAINING WALL CONCEPT **Emergency Access** San Luis Obispo County, California # Notes: - 1. Retaining wall would consist of drilled shafts spaced 6 to 8 feet oncenter with timber lagging between the piles. Tieback anchors drilled and grouted into the hillside would be installed at the pile locations to provide lateral support. Tiebacks are typically installed about 6 to 12-foot vertical intervals, depending on landslide forces. - 2. Once the solider piles are in place, the wall and lagging are constructed from the top down. Temporary slopes and backfill would not be required. - 3. The base of the wall and material in front of the wall would need to be removed below the existing landslide deposits to allow for the lagging to be installed. - 4. Tiebacks for this type of landslide repair could potentially be more than 100 feet deep and designed for capacities of 100 tons for more. - Conceptual only. All locations and dimensions are approximate. Not for design, estimates, or construction. 5. Other surface drainage, landscape and roadway improvements should also be provided. SOLDIER PILE AND TIEBACK WALL CONCEPT Cave Landing Road - Bluff Drive Emergency Access San Luis Obispo County, California Drainage material with drain outlet directed to base of slope # Notes: - 1. Existing landslide and unstable slope materials are removed from below the roadway. - 2. The fill is keyed and benched into underlying stable bedrock to provide a buttress/shear key to stabilize the slope below the roadway. Limits would be estimated from slope stability analysis. - 3. Temporary slope is likely to be 1.5:1 or flatter but would need to be estimated from slope stability analysis and/or be supported by shoring. - 4. Backslope and bench drains should be provided to control subsurface water. - 5. Surface drainage should be controlled to direct water away from slopes. Conceptual only. All locations and dimensions are approximate. Not for design, estimates, or construction. GRADED CUT AND FILL CONCEPT Cave Landing Road - Bluff Drive Emergency Access San Luis Obispo County, California Notes: - 1. Structure would consist of a pile supported slab-type roadway. - Piles are likely to be drilled shafts/cast-in-drilled hole (CIDH) piles embedded below existing landslide deposits. 7 - 3. Piles can be battered and/or provided with ground anchors to help resist lateral forces. - 4. Other surface drainage, landscape and roadway improvements should also be provided. Conceptual only. All locations and dimensions are approximate. Not for design, estimates, or construction. LAND BRIDGE CONCEPT LAND BRIDGE CONCEPT Cave Landing Road - Bluff Drive Emergency Access San Luis Obispo County, California Notes: - Structure would consist of an elevated structure supported on deep foundations. - Piles are likely to be drilled shafts/cast-in-drilled hole (CIDH) piles embedded existing landslide deposits. S - Piles would need to be designed to resist lateral forces and loss of support in response to landslide movements. е; - 4. Other surface drainage, landscape and roadway improvements should also be provided. Conceptual only. All locations and dimensions are approximate. Not for design, estimates, or construction. # VIADUCT CONCEPT Cave Landing Road - Bluff Drive Emergency Access San Luis Obispo County, California # APPENDIX E TRAFFIC MODEL PLOTS, METHODOLOGIES AND SOCIOECONOMIC DATA #### TRAVEL FORECASTS Between 1980 and 2000, the population in Avila and the Avila Valley increased from approximately 1,300 to 2,100. Both the County General Plan and the Avila Beach Specific Plan permit further growth. If similar growth patterns persist within the study area in the future, the population is expected to reach approximately 2,400 by build-out of the planned land uses. The need for future transportation improvements will depend upon the intensity and location of this future growth. In 2001 as an initial step in assessment of future transportation needs, a computer traffic forecast model was developed to translate future land uses into projected roadway volumes. This initial forecast model was updated in 2008 by assigning 1,703 total employees in the base-year scenario and 2,235 total employees in the future year. This analysis tool formed the technical basis for identifying potential system deficiencies and possible land use or transportation enhancements. For the purpose of this analysis the term "future" means the date when the planned land uses as defined in the General Plan and Specific Plan are fully constructed. #### **Avila Traffic Model** The current transportation model is a TP+ software model. The model links land use plans and densities to future traffic projections. Model land uses include residential, single family, multi-family, mobile home, recreational vehicles, and hotels, and employment, retail, service, government, education, and other. Special generators and traffic "gateways" into the Avila area are also represented. The TP+ model was developed/calibrated from existing 2006 (base year) data. A future year, based on the build-out of the Avila Beach Specific Plan and the associated San Luis Obispo County General Plan was also created. For the purposes of this study "build-out" refers to the completion of planned land uses as defined by the adopted County General Plan or Avila Beach Specific Plan. This represents a future condition where all planned residential, commercial and office development is constructed. #### **Modeling Process** The Avila Traffic Model follows the standard four-step travel demand forecasting process: trip generation, trip distribution, mode choice (not used), and route assignment. The trip generation and distribution models were originally developed by Caltrans and converted to the County's model. The remainder of the modeling process was developed and applied using the TP+ model. #### **Database** Four databases of information are maintained for use in the model: socio-economic data, roadway network data, traffic counts and a database of codes for street names and districts. Each database contains information for a particular year or time horizon. #### **Travel Demand** The travel demand forecasting model estimates trip productions and attraction in the trip generation module, zone-to-zone trip origins/destinations in the trip distribution module, and traffic volumes in the trip assignment module. The trip generation model estimates vehicle trips since it has been assumed that modes other than auto are a negligible percentage of the total, and are not included in the modeling process. The trip generation model estimates the number of trips to and from each zone in the region or gateway, given the population and employment estimates for any particular year, for each of the following three trip purposes: - 1) Home Based Work - 2) Home Based Other - 3) Non-home Based In addition, internal to external and external to internal trips from the various gateways are also included. External to external trips along SR 101 were also included. The trip production model applies trip production rates to households by housing type by zone and trip purpose to estimate the number of trips produced. The trip attraction model applies trip attraction rates to employment data by zone and trip purpose to estimate the number of trips attracted. The trip distribution model links productions and attractions, estimated by the trip generation model, using the physical separation between two zones and the relative attractiveness of the zone. This method of trip distribution uses the gravity model estimation technique. The trip distribution model produces a vehicle trip table for each zone pair in the system by trip purpose. The trip assignment model estimates the number of vehicles on each roadway segment in the model, given the total number of vehicle trips to and from each Traffic Analysis Zone (TAZ) in the model and the physical characteristics of the road. Volumes are estimated for a 24-hour (daily) period. Figure D-1 shows each TAZ in the Avila area. #### **Model Applications** The Avila model is a sub-regional model and is designed to meet local planning needs. Local or site-specific planning studies have different requirements and are often not well suited for direct applications of the model. Generally, local
planning studies require additional detail beyond the scope of the regional model. However the Avila sub-regional model may be used to develop increment data that can be applied to count data to develop future background volumes. Actual land use or network projects may or may not be in the Avila model and would need to be confirmed prior to use. The transportation professional would then need to determine what adjustments would need to be applied to the resulting future volumes in order to accurately forecast a project's impacts. There are three other types of model applications that can also provide information necessary for local or site-specific planning studies. These include regional or corridor models, citywide models, and site impact models. There are three types of agencies that share responsibility for developing and maintaining the various models and databases developed. The agencies responsible for developing and maintaining data in the regional model include the regional transportation planning agency, local jurisdictions (cities or counties), and/or Caltrans. Avila's socio-economic database for build-out of the General Plan was developed using the County's projections for population and employment for Avila and Avila Valley, in conjunction with a variety of other sources. Population estimates were calibrated using 2000 U.S. Census data and then projected out to the base and build-out model years using a growth rate of 1.4 (as determined by the California Department of Finance). Population densities were then developed for each zone based on census block estimates and housing units to help further refine population projections within each TAZ. Housing unit counts were verified and updated using multiple techniques. Base year unit counts were built from a review of County provide GIS parcel data and current aerials of the area. These numbers were then refined through a combination of field checks and phone calls (to local hotels). County zoning densities were then applied to base year counts, within the parameters of existing Area Plans (including the Avila Beach Specific Plan, the Port San Luis Harbor District Master Plan, the San Luis Bay Area Plan – Coastal and the San Luis Bay Area Plan – Inland), to calculate build-out 2020 unit totals. Employment counts were verified and updated through a combination of field checks and phone calls. Employment projections for build-out were then calculated based on County zoning, planned projects and all applicable local plans (including the Avila Beach Specific Plan, the Port San Luis Harbor District Master Plan, the San Luis Bay Area Plan – Coastal and the San Luis Bay Area Plan – Inland). The population and employment estimates were then assigned to the appropriate Traffic Analysis Zone based on the known parameters of the County General Plan the Avila Beach Specific Plan, and the Port San Luis Harbor District Master Plan. The resulting estimates of population and employment make the best use of available data, bounded and controlled by the estimates made by the County for the study area. A copy of the socio-economic data used is included as part of this appendix as Tables E-1 and E-2. Tables E-3 and E-4 show the model input data, by TAZ, for 2006 and 2020, respectively. The 2020 model plot is also included as part of this appendix. # **Table E-1 Avila Valley Circulation Study** # 2006 Socio Economic Profile | | | POP/HH EMPLOYMENT | | | | | | | | | | | | | | | |-----|-------------------------------|-------------------|---------|-----|-----|-----|-----|-----|---------|--------|---------|--------|--------|--------|----------|----------------------------------| | | Zone | Pop | Density | нн | НН | НН | НН | НН | Total | Retail | Service | Govt | Educ | Other | Total | | | TAZ | PLNG AREA | POP | POP/HH | SF | MF | MH | RV | Н | TOTALHH | RETEMP | SVCEMP | GOVEMP | EDUEMP | OTHEMP | TOTALEMP | | | 36 | San Luis Bay Coastal | 18 | 1.8 | - | - | 11 | 41 | - | 52 | 51 | 18 | 25 | - | 190 | 284 | Harford Pier | | 40 | San Luis Bay Coastal & Inland | 665 | 1.3 | 257 | 117 | 163 | - | 30 | 567 | - | 45 | 4 | - | 31 | 80 | Avila Village | | 41 | San Luis Bay Coastal | 80 | 2.0 | 7 | 10 | - | - | 54 | 71 | 82 | 33 | - | - | - | 115 | Core Commercial | | 42 | San Luis Bay Coastal | 46 | 2.6 | 8 | 1 | - | - | 28 | 37 | 1 | 12 | 4 | - | - | 17 | | | 43 | San Luis Bay Coastal | - | 0.0 | - | - | - | - | - | - | - | - | 1 | - | 8 | 9 | Yacht Club & Marine Institute | | 44 | San Luis Bay Coastal | 107 | 1.6 | 41 | 21 | - | - | 31 | 93 | - | 13 | | - | - | 13 | | | 45 | San Luis Bay Coastal | - | 2.3 | - | - | - | - | - | - | - | - | - | - | - | - | Beach | | 46 | San Luis Bay Coastal | 58 | 1.7 | 24 | 20 | - | - | - | 44 | - | - | - | - | - | - | | | 49 | San Luis Bay Coastal & Inland | - | 2.2 | - | - | - | - | - | - | - | - | - | - | - | - | | | 50 | San Luis Bay Coastal & Inland | 140 | 1.9 | - | - | - | - | 140 | 140 | - | 45 | - | - | 35 | 80 | Golf Course | | 51 | San Luis Bay Coastal | - | 0.0 | - | - | - | - | - | - | - | - | - | - | - | - | Tank Farm Property | | 53 | San Luis Bay Inland | 13 | 2.1 | 6 | - | 1 | - | - | 7 | - | - | - | - | - | - | | | 54 | San Luis Bay Coastal & Inland | 84 | 2.2 | 5 | - | - | - | 74 | 79 | - | 50 | - | - | - | 50 | Sycamore Mineral Springs | | 55 | San Luis Bay Coastal | - | 2.2 | - | - | - | - | - | - | - | - | - | - | - | - | Pirate's Cove | | 56 | San Luis Bay Inland | 79 | 2.9 | 28 | - | 2 | - | - | 30 | - | - | - | - | - | - | | | 57 | San Luis Bay Inland | 132 | 3.3 | 44 | - | - | - | - | 44 | - | 2 | - | 12 | - | 14 | Bellevue-Santa Fe Charter School | | 58 | San Luis Bay Coastal & Inland | 10 | 2.2 | 5 | - | - | - | - | 5 | - | - | - | - | 6 | 6 | | | 59 | San Luis Bay Coastal & Inland | - | 1.9 | - | - | - | - | - | - | 30 | - | - | - | - | 30 | Avila Valley Barn | | 60 | San Luis Bay Inland | 14 | 2.2 | 7 | - | - | - | - | 7 | 23 | 6 | - | - | 12 | 41 | | | 61 | San Luis Bay Coastal & Inland | 30 | 1.6 | - | - | - | 131 | 30 | 161 | - | 40 | - | - | - | 40 | Avila Hot Springs | | 63 | San Luis Bay Inland | 188 | 2.4 | 86 | - | - | - | - | 86 | - | - | - | - | - | - | | | 64 | San Luis Bay Inland | 86 | 2.5 | 37 | - | 1 | - | - | 38 | - | - | - | - | 24 | 24 | | | 65 | San Luis Bay Coastal & Inland | 5 | 1.8 | 3 | - | - | - | - | 3 | - | - | - | - | - | - | Lighthouse | | 66 | San Luis Bay Coastal & Inland | - | 2.0 | - | - | - | - | - | - | - | - | - | - | - | - | | | 67 | San Luis Bay Coastal & Inland | - | 2.0 | - | - | - | - | - | - | - | 900 | - | - | - | 900 | Diablo | | 68 | San Luis Bay Inland | 66 | 2.4 | 30 | - | - | - | - | 30 | - | - | - | - | - | - | | | 69 | San Luis Bay Inland | 57 | 2.4 | 20 | - | 6 | - | - | 26 | - | - | - | - | - | - | | | | TOTAL | 1,879 | | 608 | 169 | 184 | 172 | 387 | 1,520 | 187 | 1,164 | 34 | 12 | 306 | 1,703 | | Avila Beach Town SF - Single Family MF - Multi Family MH - Mobile Home RV - Recreation Vehicle H - Hotel # **Table E-2 Avila Valley Circulation Study** # **2020 Socio Economic Profile** | | | | | | POP/ | НН | | | | EMPLOYMENT | | | | | |] | |-----|-------------------------------|-------|---------|-----|------|-----|-----|-----|---------|------------|---------|--------|--------|--------|----------|----------------------------------| | | Zone | Pop | Density | нн | нн | НН | нн | НН | Total | Retail | Service | Govt | Educ | Other | Total | | | TAZ | PLNG AREA | POP | POP/HH | SF | MF | MH | RV | Н | TOTALHH | RETEMP | SVCEMP | GOVEMP | EDUEMP | OTHEMP | TOTALEMP | | | 36 | San Luis Bay Coastal | 50 | 1.8 | - | - | - | 151 | 50 | 201 | 81 | 58 | 35 | - | 230 | 404 | Harford Pier | | 40 | San Luis Bay Coastal & Inland | 690 | 1.3 | 278 | 117 | 163 | - | 30 | 588 | - | 70 | 5 | - | 38 | 113 | Avila Village | | 41 | San Luis Bay Coastal | 126 | 2.0 | 7 | 40 | - | - | 54 | 101 | 102 | 43 | - | - | - | 145 | Core Commercial | | 42 | San Luis Bay Coastal | 90 | 2.6 | 22 | 9 | - | - | 28 | 59 | 1 | 12 | 4 | - | - | 17 | | | 43 | San Luis Bay Coastal | - | 0.0 | - | - | - | - | - | - | - | - | 3 | - | 12 | 15 | Yacht Club & Marine Institute | | 44 | San Luis Bay Coastal | 206 | 1.6 | 45 | 97 | - | - | 31 | 173 | • | 13 | - | - | | 13 | | | 45 | San Luis Bay Coastal | - | 2.3 | - | - | - | - | - | - | • | - | - | - | | - | Beach | | 46 | San Luis Bay Coastal | 103 | 1.7 | 29 | 50 | - | - | - | 79 | • | - | - | - | | - | | | 49 | San Luis Bay Coastal & Inland | - | 2.2 | - | - | - | - | - | - | 1 | - | - | - | | - | | | 50 | San Luis Bay Coastal & Inland | 145 | 1.9 | - | 3 | - | - | 140 | 143 | - | 50 | - | - | 40 | 90 | Golf Course | | 51 | San Luis Bay Coastal | - | 0.0 | - | - | - | - | - | - | 1 | - | - | - | | - | Tank Farm Property | | 53 | San Luis Bay Inland | 29 | 2.1 | 14 | - | 1 | - | - | 15 | 1 | - | - | - | | - | | | 54 | San Luis Bay Coastal & Inland | 105 | 2.2 | 5 | - | - | - | 95 | 100 | - | 65 | - | - | | 65 | Sycamore Mineral Springs | | 55 | San Luis Bay Coastal | - | 2.2 | - | - | - | - | - | - | 1 | - | - | - | | - | Pirate's Cove | | 56 | San Luis Bay Inland | 92 | 2.9 | 33 | - | 2 | - | - | 35 | 1 | - | - | - | | - | | | 57 | San Luis Bay Inland | 138 | 3.3 | 46 | - | - | - | - | 46 | 1 | 2 | - | 15 | | 17 | Bellevue-Santa Fe Charter School | | 58 | San Luis Bay Coastal & Inland | 10 | 2.2 | 5 | - | - | - | - | 5 | 1 | - | - | - | 6 | 6 | | | 59 | San Luis Bay Coastal & Inland | 3 | 1.9 | 2 | - | - | - | - | 2 | 35 | - | - | - | | 35 | Avila Valley Barn | | 60 | San Luis Bay Inland | 16 | 2.2 | 8 | - | - | - | - | 8 | 330 | 6 | - | - | 15 | 351 | | | 61 | San Luis Bay Coastal & Inland | 30 | 1.6 | - | - | - | 131 | 30 | 161 | 1 | 40 | - | - | | 40 | Avila Hot Springs | | 63 | San Luis Bay Inland | 236 | 2.4 | 108 | - | - | - | _ | 108 | - | - | - | - | - | - | | | 64 | San Luis Bay Inland | 100 | 2.5 | 43 | - | 1 | - | - | 44 | = | - | - | - | 24 | 24 | | | 65 | San Luis Bay Coastal & Inland | 15 | 1.8 | 9 | - | - | - | - | 9 | - | - | - | - | - | - |
Lighthouse | | 66 | San Luis Bay Coastal & Inland | - | 2.0 | - | - | - | - | - | - | - | - | - | - | - | - | | | 67 | San Luis Bay Coastal & Inland | - | 2.0 | - | - | - | - | - | - | - | 900 | - | - | - | 900 | Diablo | | 68 | San Luis Bay Inland | 111 | 2.4 | 51 | - | - | - | - | 51 | - | - | - | - | - | - | | | 69 | San Luis Bay Inland | 94 | 2.4 | 37 | - | 6 | - | | 43 | - | - | - | - | - | - | | | | TOTAL | 2,391 | | 742 | 316 | 173 | 282 | 458 | 1,971 | 549 | 1,259 | 47 | 15 | 365 | 2,235 |] | Avila Beach Town SF - Single Family MF - Multi Family MH - Mobile Home RV - Recreation Vehicle H - Hotel Table E-3 Avila Valley Circulation Study 2006 Model Inputs | TAZ | SF | MF | МН | RV H | OTEL | POP | RET | SER | GOV | ED | ОТН | GP1 | GP2 | GP3 | GA1 | GA2 | GA3 | SGP1 | SGP2 | SGP3 | SGA1 | SGA2 | SGA3 | |-----------|-----|-----|-----|------|------|-----|-----|-----|-----|----|-----|-----|------|-----|-----|------|-----|------|------|------|------|------|------| | 36 | 0 | 0 | 11 | 41 | 0 | 18 | 51 | 18 | 25 | 0 | 190 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 40 | 257 | 117 | 163 | 0 | 0 | 665 | 0 | 45 | 4 | 0 | 33 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 41 | 7 | 1 | 0 | 0 | 0 | 80 | 82 | 33 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 42 | 8 | 0 | 0 | 0 | 0 | 46 | 1 | 12 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 200 | 0 | 0 | 200 | 0 | | 43 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 44 | 41 | 2 | 0 | 0 | 0 | 107 | 0 | 13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 45 | 0 | | 46 | 24 | 2 | 0 | 0 | 0 | 58 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 49 | 0 | | 50 | 0 | 0 | 0 | 0 | 0 | 140 | 0 | 45 | 0 | 0 | 35 | 0 | 0 | 0 | 0 | 0 | 0 | 359 | 0 | 0 | 359 | 0 | 0 | | 51 | 0 | | 53 | 6 | 0 | 1 | 0 | 0 | 13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 54 | 5 | 0 | 0 | 0 | 0 | 84 | 0 | 50 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 55 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 163 | 0 | 0 | 163 | 0 | | 56 | 28 | 0 | 2 | 0 | 0 | 79 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 57 | 44 | 0 | 0 | 0 | 0 | 132 | 0 | 2 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 58 | 5 | 0 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 59 | 0 | 0 | 0 | 0 | 0 | 0 | 30 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 60 | 7 | 0 | 0 | 0 | 0 | 14 | 23 | 6 | 0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 61 | 0 | 0 | 0 | 131 | 0 | 30 | 0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 63 | 86 | 0 | 0 | 0 | 0 | 188 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 64 | 37 | 0 | 1 | 0 | 0 | 86 | 0 | 0 | 0 | 0 | 24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 65 | 3 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 66 | 0 | | 67 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 350 | 690 | 960 | 350 | 690 | 960 | | 68 | 30 | 0 | 0 | 0 | 0 | 66 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 69 | 20 | 0 | 6 | 0 | 0 | 57 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 73 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 67 | 437 | 198 | 43 | 276 | 125 | 0 | 0 | 0 | 0 | 0 | 0 | | 74 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 91 | 597 | 270 | 52 | 336 | 152 | 0 | 0 | 0 | 0 | 0 | 0 | | 75 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 289 | 1879 | 850 | 136 | 1537 | 695 | 0 | 0 | 0 | 0 | 0 | 0 | | 77 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 238 | 1549 | 700 | 303 | 1971 | 892 | 0 | 0 | 0 | 0 | 0 | 0 | | 78 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 157 | 1022 | 462 | 210 | 1365 | 617 | 0 | 0 | 0 | 0 | 0 | 0 | Table E-4 Avila Valley Circulation Study 2020 Model Inputs | TAZ | SF | MF | МН | RV H | OTEL | POP | RET | SER | GOV | ED | ОТН | GP1 | GP2 | GP3 | GA1 | GA2 | GA3 | SGP1 | SGP2 | SGP3 | SGA1 | SGA2 | SGA3 | |------------------|-----|-----|-----|------|------|-----|-----|-----|-----|----|-----|-----|------|-----|-----|------|-----|------|------|------|------|------|------| | 36 | 0 | 0 | 0 | 151 | 50 | 50 | 81 | 58 | 35 | 0 | 230 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 40 | 278 | 117 | 163 | 0 | 30 | 690 | 0 | 70 | 5 | 0 | 38 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 41 | 7 | 40 | 0 | 0 | 54 | 126 | 102 | 43 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 42 | 22 | 9 | 0 | 0 | 28 | 90 | 1 | 12 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 220 | 0 | 0 | 220 | 0 | | 43 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 44 | 45 | 97 | 0 | 0 | 31 | 206 | 0 | 13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 45 | 0 | | 46 | 29 | 50 | 0 | 0 | 0 | 103 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 49 | 0 | | 50 | 0 | 3 | 0 | 0 | 140 | 145 | 0 | 50 | 0 | 0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 | 359 | 0 | 0 | 359 | 0 | 0 | | 51 | 0 | | 53 | 14 | 0 | 1 | 0 | 0 | 29 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 54 | 5 | 0 | 0 | 0 | 95 | 105 | 0 | 65 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 55 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 163 | 0 | 0 | 163 | 0 | | 56 | 33 | 0 | 2 | 0 | 0 | 92 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 57 | 46 | 0 | 0 | 0 | 0 | 138 | 0 | 2 | 0 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 58 | 5 | 0 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 59 | 2 | 0 | 0 | 0 | 0 | 3 | 35 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 60 | 8 | 0 | 0 | 0 | 0 | 16 | 330 | 6 | 0 | 0 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 61 | 0 | 0 | 0 | 131 | 30 | 30 | 0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 63 | 108 | 0 | 0 | 0 | 0 | 236 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 64 | 43 | 0 | 1 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 65 | 9 | 0 | 0 | 0 | 0 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 66 | 0 | | 67 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 350 | 690 | 960 | 350 | 690 | 960 | | 68 | 51 | 0 | 0 | 0 | 0 | 111 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 69 | 37 | 0 | 6 | 0 | 0 | 94 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 73 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 67 | 437 | 198 | 43 | 276 | 125 | 0 | 0 | 0 | 0 | 0 | 0 | | 74
 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 91 | 597 | 270 | 52 | 336 | 152 | 0 | 0 | 0 | 0 | 0 | 0 | | 75
 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 289 | 1879 | 850 | 136 | 1537 | 695 | 0 | 0 | 0 | 0 | 0 | 0 | | 77
- 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 238 | 1549 | 700 | 303 | 1971 | 892 | 0 | 0 | 0 | 0 | 0 | 0 | | 78 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 157 | 1022 | 462 | 210 | 1365 | 617 | 0 | 0 | 0 | 0 | 0 | 0 | # APPENDIX F **FUTURE CONDITIONS** FREEWAY AND INTERSECTION LEVELS OF SERVICE # BASIC FREEWAY SEGMENTS WORKSHEET Average Passenger-Car Speed (mi/h) rce-Flow Speed FFS = 75 mith Application | Input Output 70 mida 70FFS, N, v_p Operational (LOS) LOS, S, D 65 midh 1450 60 mith N, S, D Design (N) FFS, LOS, v_D 6055 mith Design (v_p) FFS, LOS, N v_B, S, D 50 Planning (LOS) LOS, S, D FFS, N, AADT Planning (N) FFS, LOS, AADT N, S, D Planning (v_o) FFS, LOS, N v_o, S, D 30 1600 1200 2400 Flow Rate (pc/h/ln) General Information Site Information Highway/Direction of Travel Analyst US 101 North or South J. Gormley Agency or Company From/To North of San Luis Bay Drive TPG Consulting, Inc. Date Performed Jurisdiction Caltrans 10/30/2008 Analysis Time Period Analysis Year 2020 Non Summer Weekday Project Description Avila Circulation Element Update 06-1052.1 Oper.(LOS) Des.(N) □ Planning Data Flow Inputs Volume, V 4784 veh/h Peak-Hour Factor, PHF 0.90 **AADT** %Trucks and Buses, P_T 9 veh/day 0 Peak-Hr Prop. of AADT, K %RVs, P_R Peak-Hr Direction Prop. D General Terrain: Level $DDHV = AADT \times K \times D$ veh/h Grade Length mi 1.00 Driver type adjustment Up/Down % Calculate Flow Adjustments f_p 1.00 E_R 1.2 E_{T} 1.5 $f_{HV} = 1/[1 + P_T(E_T - 1) + P_R(E_R - 1)]$ 0.957 Speed Inputs Calc Speed Adj and FFS Lane Width ft 12.0 mi/h f_{LW} Rt-Shoulder Lat. Clearance ft 6.0 f_{LC} mi/h Interchange Density 0.50 I/mi f_{ID} mi/h Number of Lanes, N 2 mi/h f_N FFS (measured) 70.0 mi/h **FFS** 70.0 mi/h Base free-flow Speed, BFFS mi/h LOS and Performance Measures Design (N) Design (N) Operational (LOS) Design LOS $v_{p} = (V \text{ or DDHV}) / (PHF x N x f_{HV} x f_{p}) 2777$ pc/h/ln $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x f_p)$ pc/h mi/h mi/h $D = v_p / S$ pc/mi/ln $D = v_n / S$ pc/mi/ln F LOS Required Number of Lanes, N Glossary Factor Location N - Number of lanes S - Speed f_{LW} - Exhibit 23-4 E_R - Exhibits23-8, 23-10
V - Hourly volume D - Density E_T - Exhibits 23-8, 23-10, 23-11 f_{LC} - Exhibit 23-5 v_p - Flow rate FFS - Free-flow speed f_p - Page 23-12 DDHV - Directional design hour volume BFFS - Base free-flow speed LOS, S, FFS, v_n - Exhibits 23-2, 23-3 f_N - Exhibit 23-6 f_{ID} - Exhibit 23-7 # BASIC FREEWAY SEGMENTS WORKSHEET Average Passenger-Car Speed (mi/h) rce-Flow Speed FFS = 75 mith Application | Input Output 70 mida 70FFS, N, v_p Operational (LOS) LOS, S, D 65 midh 1450 60 mith N, S, D Design (N) FFS, LOS, v_D 6055 mith Design (v_p) FFS, LOS, N v_B, S, D 50 Planning (LOS) LOS, S, D FFS, N, AADT Planning (N) FFS, LOS, AADT N, S, D Planning (v_o) FFS, LOS, N v_p, S, D 30 1600 1200 2400 Flow Rate (pc/h/ln) General Information Site Information Highway/Direction of Travel Analyst US 101 North or South J. Gormley Agency or Company From/To North of San Luis Bay Drive TPG Consulting, Inc. Date Performed Jurisdiction Caltrans 10/30/2008 Analysis Time Period Analysis Year 2020 Summer/Holiday Weekend Project Description Avila Circulation Element Update 06-1052.1 Oper.(LOS) Des.(N) □ Planning Data Flow Inputs Volume, V 4995 veh/h Peak-Hour Factor, PHF 0.90 **AADT** %Trucks and Buses, P_T 9 veh/day 0 Peak-Hr Prop. of AADT, K %RVs, P_R Peak-Hr Direction Prop. D General Terrain: Level $DDHV = AADT \times K \times D$ veh/h Grade Length mi 1.00 Driver type adjustment Up/Down % Calculate Flow Adjustments f_p 1.00 E_R 1.2 E_{T} 1.5 $f_{HV} = 1/[1 + P_T(E_T - 1) + P_R(E_R - 1)]$ 0.957 Speed Inputs Calc Speed Adj and FFS Lane Width ft 12.0 mi/h f_{LW} Rt-Shoulder Lat. Clearance ft 6.0 f_{LC} mi/h Interchange Density 0.50 I/mi f_{ID} mi/h Number of Lanes, N 2 mi/h f_N FFS (measured) 70.0 mi/h **FFS** 70.0 mi/h Base free-flow Speed, BFFS mi/h LOS and Performance Measures Design (N) Design (N) Operational (LOS) Design LOS $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x f_p) 2900$ pc/h/ln $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x f_p)$ pc/h mi/h mi/h $D = v_p / S$ pc/mi/ln $D = v_n / S$ pc/mi/ln F LOS Required Number of Lanes, N Glossary Factor Location N - Number of lanes S - Speed f_{IW} - Exhibit 23-4 E_R - Exhibits23-8, 23-10 V - Hourly volume D - Density E_T - Exhibits 23-8, 23-10, 23-11 f_{LC} - Exhibit 23-5 v_p - Flow rate FFS - Free-flow speed DDHV - Directional design hour volume BFFS - Base free-flow speed LOS, S, FFS, v_n - Exhibits 23-2, 23-3 f_p - Page 23-12 f_N - Exhibit 23-6 f_{ID} - Exhibit 23-7 # BASIC FREEWAY SEGMENTS WORKSHEET Average Passenger-Car Speed (mi/h) rce-Flow Speed FFS = 75 mith Application | Input Output 70 mida 70FFS, N, v_p Operational (LOS) LOS, S, D 65 midh 1450 60 mith N, S, D Design (N) FFS, LOS, v_D 6055 mith Design (v_p) FFS, LOS, N v_B, S, D 50 Planning (LOS) LOS, S, D FFS, N, AADT Planning (N) FFS, LOS, AADT N, S, D Planning (v_o) FFS, LOS, N v_p, S, D 30 1600 1200 2400 Flow Rate (pc/h/ln) General Information Site Information Highway/Direction of Travel Analyst US 101 North or South J. Gormley Agency or Company From/To San Luis Bay Dr to Avila Beach TPG Consulting, Inc. Date Performed Jurisdiction Caltrans 10/30/2008 Analysis Time Period Analysis Year 2020 Non Summer Weekday Project Description Avila Circulation Element Update 06-1052.1 Oper.(LOS) Des.(N) □ Planning Data Flow Inputs Volume, V 4376 veh/h Peak-Hour Factor, PHF 0.90 **AADT** %Trucks and Buses, P_T 9 veh/day 0 Peak-Hr Prop. of AADT, K %RVs, P_R Peak-Hr Direction Prop. D General Terrain: Level $DDHV = AADT \times K \times D$ veh/h Grade Length mi 1.00 Driver type adjustment Up/Down % Calculate Flow Adjustments f_p 1.00 E_R 1.2 E_{T} 1.5 $f_{HV} = 1/[1 + P_T(E_T - 1) + P_R(E_R - 1)]$ 0.957 Speed Inputs Calc Speed Adj and FFS Lane Width ft 12.0 mi/h f_{LW} Rt-Shoulder Lat. Clearance ft 6.0 f_{LC} mi/h Interchange Density 0.50 I/mi f_{ID} mi/h Number of Lanes, N 2 mi/h f_N FFS (measured) 70.0 mi/h **FFS** 70.0 mi/h Base free-flow Speed, BFFS mi/h LOS and Performance Measures Design (N) Design (N) Operational (LOS) Design LOS $v_{p} = (V \text{ or DDHV}) / (PHF x N x f_{HV} x f_{p}) 2541$ pc/h/ln $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x f_p)$ pc/h mi/h mi/h $D = v_p / S$ pc/mi/ln $D = v_n / S$ pc/mi/ln F LOS Required Number of Lanes, N Glossary Factor Location N - Number of lanes S - Speed f_{IW} - Exhibit 23-4 E_R - Exhibits23-8, 23-10 V - Hourly volume D - Density E_T - Exhibits 23-8, 23-10, 23-11 f_{LC} - Exhibit 23-5 v_p - Flow rate FFS - Free-flow speed f_p - Page 23-12 DDHV - Directional design hour volume BFFS - Base free-flow speed LOS, S, FFS, v_n - Exhibits 23-2, 23-3 f_N - Exhibit 23-6 f_{ID} - Exhibit 23-7 # BASIC FREEWAY SEGMENTS WORKSHEET Average Passenger-Car Speed (mi/h) rce-Flow Speed FFS = 75 mith Application | Input Output 70 mida 70FFS, N, v_p Operational (LOS) LOS, S, D 65 midh 1450 60 mith Design (N) FFS, LOS, v_D N, S, D 6055 mith Design (v_p) FFS, LOS, N v_B, S, D 50 Planning (LOS) LOS, S, D FFS, N, AADT FFS, LOS, AADT Planning (N) N, S, D Planning (v_o) FFS, LOS, N v_p, S, D 30 1600 1200 2400 Flow Rate (pc/h/ln) General Information Site Information Highway/Direction of Travel Analyst US 101 North or South J. Gormley Agency or Company From/To San Luis Bay Dr to Avila Beach TPG Consulting, Inc. Date Performed Jurisdiction Caltrans 10/30/2008 Analysis Time Period Analysis Year 2020 Summer/Holiday Weekend Project Description Avila Circulation Element Update 06-1052.1 Oper.(LOS) Des.(N) □ Planning Data Flow Inputs Volume, V 4569 veh/h Peak-Hour Factor, PHF 0.90 **AADT** %Trucks and Buses, P_T 9 veh/day 0 Peak-Hr Prop. of AADT, K %RVs, P_R Peak-Hr Direction Prop. D General Terrain: Level $DDHV = AADT \times K \times D$ veh/h Grade Length mi 1.00 Driver type adjustment Up/Down % Calculate Flow Adjustments f_p 1.00 E_R 1.2 E_{T} 1.5 $f_{HV} = 1/[1 + P_T(E_T - 1) + P_R(E_R - 1)]$ 0.957 Speed Inputs Calc Speed Adj and FFS Lane Width ft 12.0 mi/h f_{LW} Rt-Shoulder Lat. Clearance ft 6.0 f_{LC} mi/h Interchange Density 0.50 I/mi f_{ID} mi/h Number of Lanes, N 2 mi/h f_N FFS (measured) 70.0 mi/h **FFS** 70.0 mi/h Base free-flow Speed, BFFS mi/h LOS and Performance Measures Design (N) Design (N) Operational (LOS) Design LOS $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x f_p) 2653$ pc/h/ln $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x f_p)$ pc/h mi/h mi/h $D = v_p / S$ pc/mi/ln $D = v_n / S$ pc/mi/ln F LOS Required Number of Lanes, N Glossary Factor Location N - Number of lanes S - Speed f_{IW} - Exhibit 23-4 E_R - Exhibits23-8, 23-10 V - Hourly volume D - Density E_T - Exhibits 23-8, 23-10, 23-11 f_{LC} - Exhibit 23-5 v_p - Flow rate FFS - Free-flow speed f_p - Page 23-12 f_N - Exhibit 23-6 DDHV - Directional design hour volume BFFS - Base free-flow speed LOS, S, FFS, v_n - Exhibits 23-2, 23-3 f_{ID} - Exhibit 23-7 # BASIC FREEWAY SEGMENTS WORKSHEET Average Passenger-Car Speed (mi/h) rce-Flow Speed FFS = 75 mith Application | Input Output 70 mida 70FFS, N, v_p Operational (LOS) LOS, S, D 65 midh 1450 60 mith Design (N) FFS, LOS, v_D N, S, D 6055 mith Design (v_p) FFS, LOS, N v_B, S, D 50 Planning (LOS) LOS, S, D FFS, N, AADT FFS, LOS, AADT Planning (N) N, S, D Planning (v_o) FFS, LOS, N v_p, S, D 30 1600 1200 2400 Flow Rate (pc/h/ln) General Information Site Information Highway/Direction of Travel Analyst US 101 North or South J. Gormley Agency or Company From/To South of Avila Beach Drive TPG Consulting, Inc. Date Performed Jurisdiction Caltrans 10/30/2008 Analysis Time Period Analysis Year 2020 Non Summer Weekday Project Description Avila Circulation Element Update 06-1052.1 Oper.(LOS) Des.(N) □ Planning Data Flow Inputs Volume, V 4913 veh/h Peak-Hour Factor, PHF 0.90 **AADT** %Trucks and Buses, P_T 9 veh/day 0 Peak-Hr Prop. of AADT, K %RVs, P_R Peak-Hr Direction Prop. D General Terrain: Level $DDHV = AADT \times K \times D$ veh/h Grade Length mi 1.00 Driver type adjustment Up/Down % Calculate Flow Adjustments f_p 1.00 E_R 1.2 E_{T} 1.5 $f_{HV} = 1/[1 + P_T(E_T - 1) + P_R(E_R - 1)]$ 0.957 Speed Inputs Calc Speed Adj and FFS Lane Width ft 12.0 mi/h f_{LW} Rt-Shoulder Lat. Clearance ft 6.0 f_{LC} mi/h Interchange Density 0.50 I/mi f_{ID} mi/h Number of Lanes, N 2 mi/h f_N FFS (measured) 70.0 mi/h **FFS** 70.0 mi/h Base free-flow Speed, BFFS mi/h LOS and Performance Measures Design (N) Design (N) Operational (LOS) Design LOS $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x f_p) 2852$ pc/h/ln $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x f_p)$ pc/h mi/h mi/h $D = v_p / S$ pc/mi/ln $D = v_n / S$ pc/mi/ln F LOS Required Number of Lanes, N Glossary Factor Location N - Number of lanes S - Speed f_{IW} - Exhibit 23-4 E_R - Exhibits23-8, 23-10 V - Hourly volume D - Density E_T - Exhibits 23-8, 23-10, 23-11 f_{LC} - Exhibit 23-5 v_p - Flow rate FFS - Free-flow speed DDHV - Directional design hour volume BFFS - Base free-flow speed LOS, S, FFS, v_n - Exhibits 23-2, 23-3 f_p - Page 23-12 f_N - Exhibit 23-6 f_{ID} - Exhibit 23-7 # BASIC FREEWAY SEGMENTS WORKSHEET Average Passenger-Car Speed (mi/h) rce-Flow Speed FFS = 75 mith Application | Input Output 70 mida 70FFS, N, v_p Operational (LOS) LOS, S, D 65 midh 1450 60 mith Design (N) FFS, LOS, v_D N, S, D 6055 mith Design (v_p) FFS, LOS, N v_B, S, D 50 Planning (LOS) LOS, S, D FFS, N, AADT FFS, LOS, AADT Planning (N) N, S, D Planning (v_o) FFS, LOS, N v_p, S, D 30 1600 1200 2400 Flow Rate (pc/h/ln) General Information Site Information Highway/Direction of Travel Analyst US 101 North or South J. Gormley Agency or Company From/To South of Avila Beach Drive TPG Consulting, Inc. Date Performed Jurisdiction Caltrans 10/30/2008 Analysis Time Period Analysis Year 2020 Summer/Holiday Weekend Project Description Avila Circulation Element Update 06-1052.1 Oper.(LOS) Des.(N) □ Planning Data Flow Inputs Volume, V 5130 veh/h Peak-Hour Factor, PHF 0.90 **AADT** %Trucks and Buses, P_T 9 veh/day 0 Peak-Hr Prop. of AADT, K %RVs, P_R Peak-Hr Direction Prop. D General Terrain: Level $DDHV = AADT \times K \times D$ veh/h Grade
Length mi 1.00 Driver type adjustment Up/Down % Calculate Flow Adjustments f_p 1.00 E_R 1.2 E_{T} 1.5 $f_{HV} = 1/[1 + P_T(E_T - 1) + P_R(E_R - 1)]$ 0.957 Speed Inputs Calc Speed Adj and FFS Lane Width ft 12.0 mi/h f_{LW} Rt-Shoulder Lat. Clearance ft 6.0 f_{LC} mi/h Interchange Density 0.50 I/mi f_{ID} mi/h Number of Lanes, N 2 mi/h f_N FFS (measured) 70.0 mi/h **FFS** 70.0 mi/h Base free-flow Speed, BFFS mi/h LOS and Performance Measures Design (N) Design (N) Operational (LOS) Design LOS $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x f_p) 2978$ pc/h/ln $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x f_p)$ pc/h mi/h mi/h $D = v_p / S$ pc/mi/ln $D = v_n / S$ pc/mi/ln F LOS Required Number of Lanes, N Glossary Factor Location N - Number of lanes S - Speed f_{IW} - Exhibit 23-4 E_R - Exhibits23-8, 23-10 V - Hourly volume D - Density E_T - Exhibits 23-8, 23-10, 23-11 f_{LC} - Exhibit 23-5 v_p - Flow rate FFS - Free-flow speed DDHV - Directional design hour volume BFFS - Base free-flow speed LOS, S, FFS, v_n - Exhibits 23-2, 23-3 f_p - Page 23-12 f_N - Exhibit 23-6 f_{ID} - Exhibit 23-7 | | ٠ | → | ← | • | \ | 4 | |-------------------------|-------|----------|----------|-------|----------|--------| | Lane Group | EBL | EBT | WBT | WBR | SBL | SBR | | Lane Configurations | ሻ | | 1 | 7 | ሻ | 7 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost Time (s) | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | Leading Detector (ft) | 50 | 50 | 50 | 50 | 50 | 50 | | Trailing Detector (ft) | 0 | 0 | 0 | 0 | 0 | 0 | | Turning Speed (mph) | 15 | | | 9 | 15 | 9 | | Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Frt | | | | 0.850 | | 0.850 | | Flt Protected | 0.950 | | | | 0.950 | | | Satd. Flow (prot) | 1770 | 1863 | 1863 | 1583 | 1770 | 1583 | | Flt Permitted / | 0.950 | | | | 0.950 | | | Satd. Flow (perm) | 1770 | 1863 | 1863 | 1583 | 1770 | 1583 | | Right Turn on Red | | .000 | | Yes | | Yes | | Satd. Flow (RTOR) | | | | 94 | | 56 | | Headway Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Link Speed (mph) | 1.00 | 30 | 30 | 1.00 | 30 | 1.00 | | | | | | | 1488 | | | Link Distance (ft) | | 2816 | 3296 | | | | | Travel Time (s) | 050 | 64.0 | 74.9 | 0.5 | 33.8 | | | Volume (vph) | 256 | 530 | 228 | 85 | 63 | 50 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 284 | 589 | 253 | 94 | 70 | 56 | | Lane Group Flow (vph) | | 589 | 253 | 94 | 70 | 56 | | Turn Type | Prot | | | Perm | (| custom | | Protected Phases | 7 | 4 | 8 | | | | | Permitted Phases | | | | 8 | 6 | 6 | | Detector Phases | 7 | 4 | 8 | 8 | 6 | 6 | | Minimum Initial (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | Minimum Split (s) | 9.3 | 21.3 | 21.3 | 21.3 | 21.3 | 21.3 | | Total Split (s) | 17.0 | 38.3 | 21.3 | 21.3 | 21.7 | 21.7 | | Total Split (%) | | 63.8% | | | | 36.2% | | Maximum Green (s) | 11.7 | 33.0 | 16.0 | 16.0 | 16.4 | 16.4 | | Yellow Time (s) | 4.3 | 4.3 | 4.3 | 4.3 | 4.3 | 4.3 | | All-Red Time (s) | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | Lead/Lag | Lead | 1.0 | Lag | Lag | 1.0 | 1.0 | | Lead-Lag Optimize? | Yes | | Yes | Yes | | | | Vehicle Extension (s) | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | ` , | | | | | | Min | | Recall Mode | None | None | None | None | Min | | | Walk Time (s) | | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | | Flash Dont Walk (s) | | 11.0 | 11.0 | 11.0 | 11.0 | 11.0 | | Pedestrian Calls (#/hr) | | 0 | 0 | 0 | 0 | 0 | | Act Effct Green (s) | 12.7 | 26.6 | 14.5 | 14.5 | 10.0 | 10.0 | | Actuated g/C Ratio | 0.28 | 0.62 | 0.34 | 0.34 | 0.23 | 0.23 | | v/c Ratio | 0.57 | 0.51 | 0.40 | 0.16 | 0.17 | 0.14 | | Control Delay | 20.5 | 6.1 | 15.3 | 4.3 | 17.2 | 6.9 | | Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Delay | 20.5 | 6.1 | 15.3 | 4.3 | 17.2 | 6.9 | | LOS | С | Α | В | Α | В | Α | | Approach Delay | | 10.8 | 12.3 | | 12.6 | | | Approach LOS | | В | В | | В | | | | | | | | | | S:\Projects\06-1052.1\2020 LOS\Avila at SLB Dr Non Summer.sy7 J. Gormley | | ۶ | → | ← | • | \ | 4 | |-------------------------|------|----------|----------|------|----------|------| | Lane Group | EBL | EBT | WBT | WBR | SBL | SBR | | Queue Length 50th (ft) | 61 | 57 | 54 | 0 | 16 | 0 | | Queue Length 95th (ft) | 145 | 127 | 110 | 24 | 45 | 22 | | Internal Link Dist (ft) | | 2736 | 3216 | | 1408 | | | Turn Bay Length (ft) | | | | | | | | Base Capacity (vph) | 534 | 1290 | 747 | 691 | 658 | 623 | | Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | | Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | | Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | | Reduced v/c Ratio | 0.53 | 0.46 | 0.34 | 0.14 | 0.11 | 0.09 | Area Type: Other Cycle Length: 60 Actuated Cycle Length: 43.1 Natural Cycle: 60 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.57 Intersection Signal Delay: 11.4 Intersection Capacity Utilization 39.7% Intersection LOS: B ICU Level of Service A Analysis Period (min) 15 Splits and Phases: 3: Avila Beach & San Luis Bay Drive | | • | → | ← | • | \ | 4 | |-------------------------|-----------|----------|-----------|----------|-----------|----------| | Lane Group | EBL | EBT | WBT | WBR | SBL | SBR | | Lane Configurations | ሻ | † | † | 7 | ሻ | 7 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost Time (s) | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | Leading Detector (ft) | 50 | 50 | 50 | 50 | 50 | 50 | | Trailing Detector (ft) | 0 | 0 | 0 | 0 | 0 | 0 | | Turning Speed (mph) | 15 | _ | _ | 9 | 15 | 9 | | Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Frt | | | | 0.850 | | 0.850 | | Flt Protected | 0.950 | | | 0.000 | 0.950 | 0.000 | | Satd. Flow (prot) | 1770 | 1863 | 1863 | 1583 | 1770 | 1583 | | Flt Permitted | 0.950 | 1000 | 1000 | 1000 | 0.950 | 1000 | | Satd. Flow (perm) | 1770 | 1863 | 1863 | 1583 | 1770 | 1583 | | Right Turn on Red | 1770 | 1005 | 1003 | Yes | 1770 | Yes | | _ | | | | 118 | | 48 | | Satd. Flow (RTOR) | 4.00 | 4 00 | 4.00 | | 4.00 | | | Headway Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Link Speed (mph) | | 30 | 30 | | 30 | | | Link Distance (ft) | | 2816 | 3296 | | 1488 | | | Travel Time (s) | | 64.0 | 74.9 | | 33.8 | | | Volume (vph) | 245 | 607 | 279 | 106 | 68 | 43 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 272 | 674 | 310 | 118 | 76 | 48 | | Lane Group Flow (vph) | 272 | 674 | 310 | 118 | 76 | 48 | | Turn Type | Prot | | | Perm | (| custom | | Protected Phases | 7 | 4 | 8 | | | | | Permitted Phases | | | | 8 | 6 | 6 | | Detector Phases | 7 | 4 | 8 | 8 | 6 | 6 | | Minimum Initial (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | Minimum Split (s) | 9.3 | 21.3 | 21.3 | 21.3 | 21.3 | 21.3 | | Total Split (s) | 17.0 | 38.3 | 21.3 | 21.3 | 21.7 | 21.7 | | Total Split (%) | | 63.8% | | | | 36.2% | | | 11.7 | 33.0 | 16.0 | 16.0 | 16.4 | 16.4 | | Maximum Green (s) | | | | | | | | Yellow Time (s) | 4.3 | 4.3 | 4.3 | 4.3 | 4.3 | 4.3 | | All-Red Time (s) | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | Lead/Lag | Lead | | Lag | Lag | | | | Lead-Lag Optimize? | Yes | | Yes | Yes | | | | Vehicle Extension (s) | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | Recall Mode | None | None | None | None | Min | Min | | Walk Time (s) | | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | | Flash Dont Walk (s) | | 11.0 | 11.0 | 11.0 | 11.0 | 11.0 | | Pedestrian Calls (#/hr) | | 0 | 0 | 0 | 0 | 0 | | Act Effct Green (s) | 12.6 | 27.8 | 15.7 | 15.7 | 10.2 | 10.2 | | Actuated g/C Ratio | 0.27 | 0.63 | 0.35 | 0.35 | 0.23 | 0.23 | | v/c Ratio | 0.57 | 0.58 | 0.47 | 0.19 | 0.19 | 0.12 | | Control Delay | 21.2 | 7.0 | 15.9 | 4.1 | 17.8 | 7.1 | | Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Delay | 21.2 | 7.0 | 15.9 | 4.1 | 17.8 | 7.1 | | LOS | 21.2
C | 7.0
A | 15.9
B | 4.1
A | 17.6
B | 7.1
A | | | C | | | A | | А | | Approach Delay | | 11.1 | 12.7 | | 13.7 | | | Approach LOS | | В | В | | В | | S:\Projects\06-1052.1\2020 LOS\Avila at SLB Dr Summer.sy7 J. Gormley | | ၨ | - | ← | • | - | 1 | |-------------------------|------|------|----------|------|------|------| | Lane Group | EBL | EBT | WBT | WBR | SBL | SBR | | Queue Length 50th (ft) | 62 | 71 | 69 | 0 | 18 | 0 | | Queue Length 95th (ft) | 140 | 160 | 138 | 27 | 47 | 20 | | Internal Link Dist (ft) | | 2736 | 3216 | | 1408 | | | Turn Bay Length (ft) | | | | | | | | Base Capacity (vph) | 518 | 1286 | 745 | 704 | 643 | 606 | | Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | | Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | | Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | | Reduced v/c Ratio | 0.53 | 0.52 | 0.42 | 0.17 | 0.12 | 0.08 | | | | | | | | | Area Type: Other Cycle Length: 60 Actuated Cycle Length: 44.4 Natural Cycle: 60 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.58 Intersection Signal Delay: 11.7 Intersection Capacity Utilization 42.4% Intersection LOS: B ICU Level of Service A Analysis Period (min) 15 Splits and Phases: 3: Avila Beach & San Luis Bay Drive | | Cita Information | | | | | | | |---|---|---|--|--|--|--|--| | | Site Information | | | | | | | | J. Gormley
TPG Consulting, Inc.
10/30/2008
2020 non summer weekday | Intersection Jurisdiction Analysis Year | Avila Beach Drive at San Luis
County of SLO
2020 | | | | | | | Avila Circulation Element
Drive
West | North/South Street: San Study Period (hrs): 0.25 | | | | | | | | | TPG Consulting, Inc.
10/30/2008
2020 non summer weekday
Avila Circulation Element
Drive | TPG Consulting, Inc. 10/30/2008 2020 non summer weekday Avila Circulation Element Drive North/South Street: Sai West Study Period (hrs): 0.25 | | | | | | | Vehicle
Volumes and | Adjustments | | | | | | |-------------------------------|-------------|------------|---------|--------|------------|---------| | Major Street | | Eastbound | | | Westbound | | | Movement | 1 | 2 | 3 | 4 | 5 | 6 | | | L | T | R | L | Т | R | | Volume (veh/h) | | 713 | 40 | 30 | 187 | | | Peak-Hour Factor, PHF | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | Hourly Flow Rate, HFR (veh/h) | 0 | 774 | 43 | 32 | 203 | 0 | | Percent Heavy Vehicles | 0 | | | 2 | | | | Median Type | | , | Undi | ivided | 7 | | | RT Channelized | | | 0 | | | 0 | | Lanes | 0 | 1 | 0 | 1 | 1 | 0 | | Configuration | | | TR | L | T | | | Upstream Signal | | 0 | | | 0 | | | Minor Street | | Northbound | | | Southbound | | | Movement | 7 | 8 | 9 | 10 | 11 | 12 | | | L | Т Т | R | L | Т Т | R | | Volume (veh/h) | 28 | | 23 | | | | | Peak-Hour Factor, PHF | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | Hourly Flow Rate, HFR (veh/h) | 30 | 0 | 24 | 0 | 0 | 0 | | Percent Heavy Vehicles | 2 | 0 | 2 | 0 | 0 | 0 | | Percent Grade (%) | | 0 | | | 0 | | | Flared Approach | | N | | | N | | | Storage | | 0 | | | 0 | | | RT Channelized | | | 0 | | | 0 | | Lanes | 1 | 0 | 1 | 0 | 0 | 0 | | Configuration | L | | R | | | | | Delay, Queue Length, ar | nd Level of Serv | ice | | | | | | | |-------------------------|------------------|-----------|------|------|------------|----|----|----| | Approach | Eastbound | Westbound | | S | Southbound | | | | | Movement | 1 | 4 | 7 | 8 | 9 | 10 | 11 | 12 | | Lane Configuration | | L | L | | R | | | | | v (veh/h) | | 32 | 30 | | 24 | | | | | C (m) (veh/h) | | 811 | 237 | | 387 | | | | | v/c | | 0.04 | 0.13 | | 0.06 | | | | | 95% queue length | | 0.12 | 0.43 | | 0.20 | | | | | Control Delay (s/veh) | | 9.6 | 22.4 | | 14.9 | | | | | LOS | | Α | С | | В | | | | | Approach Delay (s/veh) | | | | 19.1 | | | | | | Approach LOS | | | | С | | | | | HCS+TM Version 5.21 Generated: 11/1/2008 3:51 PM | TWO-WAY STOP CONTROL SUMMARY | | | | | | | | | | | | | | |--|---|---|--|--|--|--|--|--|--|--|--|--|--| | General Information | | Site Information | | | | | | | | | | | | | Analyst
Agency/Co.
Date Performed
Analysis Time Period | J. Gormley
TPG Consulting, Inc.
10/30/2008
2020 summer weekend | Intersection Jurisdiction Analysis Year | Avila Beach Drive at San Luis
County of SLO
2020 | | | | | | | | | | | | Project Description 06-16
East/West Street: Avila Be
Intersection Orientation: I | | North/South Street: Sa
Study Period (hrs): 0.2 | | | | | | | | | | | | | Vehicle Volumes and | Adjustments | S | | | | | |-------------------------------|-------------|------------|------|---------|------------|------| | Major Street | | Eastbound | | | Westbound | | | Movement | 1 | 2 | 3 | 4 | 5 | 6 | | | L | _ <u> </u> | R | L | | R | | Volume (veh/h) | | 765 | 48 | 31 | 202 | | | Peak-Hour Factor, PHF | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | Hourly Flow Rate, HFR (veh/h) | 0 | 831 | 52 | 33 | 219 | 0 | | Percent Heavy Vehicles | 0 | | | 2 | | | | Median Type | | , | Unc | livided | , | • | | RT Channelized | | | 0 | | | 0 | | Lanes | 0 | 1 | 0 | 1 | 1 | 0 | | Configuration | | | TR | L | T | | | Upstream Signal | | 0 | | | 0 | | | Minor Street | | Northbound | | | Southbound | | | Movement | 7 | 8 | 9 | 10 | 11 | 12 | | | L | T | R | L | T | R | | Volume (veh/h) | 43 | | 24 | | | | | Peak-Hour Factor, PHF | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | Hourly Flow Rate, HFR (veh/h) | 46 | 0 | 26 | 0 | 0 | 0 | | Percent Heavy Vehicles | 2 | 0 | 2 | 0 | 0 | 0 | | Percent Grade (%) | | 0 | | | 0 | , | | Flared Approach | | N | | | N | | | Storage | | 0 | | | 0 | | | RT Channelized | | | 0 | | | 0 | | Lanes | 1 | 0 | 1 | 0 | 0 | 0 | | Configuration | L | | R | | | | | Delay, Queue Length, and Level of Service | | | | | | | | | | | | | | |---|-----------|-----------|------|------------|------|----|-----------|----|--|--|--|--|--| | Approach | Eastbound | Westbound | | Northbound | | S | outhbound | | | | | | | | Movement | 1 | 4 | 7 | 8 | 9 | 10 | 11 | 12 | | | | | | | Lane Configuration | | L | L | | R | | | | | | | | | | v (veh/h) | | 33 | 46 | | 26 | | | | | | | | | | C (m) (veh/h) | | 766 | 212 | | 357 | | | | | | | | | | v/c | | 0.04 | 0.22 | | 0.07 | | | | | | | | | | 95% queue length | | 0.13 | 0.80 | | 0.23 | | | | | | | | | | Control Delay (s/veh) | | 9.9 | 26.6 | | 15.9 | | | | | | | | | | LOS | | Α | D | | С | | | | | | | | | | Approach Delay (s/veh) | | | | 22.7 | | | | | | | | | | | Approach LOS | | | | С | | | | | | | | | | HCS+TM Version 5.21 Generated: 11/1/2008 3:52 PM | TWO-WAY STOP CONTROL SUMMARY | | | | | | | | | |---|---|---|--|--|--|--|--|--| | General Information | | Site Information | | | | | | | | Analyst
Agency/Co.
Date Performed
Analysis Time Period | J. Gormley
TPG Consulting, Inc.
10/30/2008
2020 non summer weekday | Intersection
Jurisdiction
Analysis Year | Avila Beach at San Miguel
County of SLO
2020 | | | | | | | | 052.1 Avila Circulation Element | | | | | | | | | East/West Street: Avila Be
Intersection Orientation: E | | North/South Street: Sa
Study Period (hrs): 0.2 | <u> </u> | | | | | | | Vehicle Volumes and | Adjustments | ; | | | | | | | |-------------------------------|-------------|------------|------|---------|------------|------|--|--| | Major Street | | Eastbound | | | Westbound | | | | | Movement | 1 | 2 | 3 | 4 | 5 | 6 | | | | | L | T | R | L | T | R | | | | Volume (veh/h) | | 690 | 2 | 45 | 183 | | | | | Peak-Hour Factor, PHF | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | | | Hourly Flow Rate, HFR (veh/h) | 0 | 749 | 2 | 48 | 198 | 0 | | | | Percent Heavy Vehicles | 0 | | | 2 | | | | | | Median Type | | , | Und | livided | | | | | | RT Channelized | | | 0 | | | 0 | | | | Lanes | 0 | 1 | 0 | 1 | 1 | 0 | | | | Configuration | | | TR | L | T | | | | | Upstream Signal | | 0 | | | 0 | | | | | Minor Street | | Northbound | | | Southbound | | | | | Movement | 7 | 8 | 9 | 10 | 11 | 12 | | | | | L | T | R | L | T | R | | | | Volume (veh/h) | 0 | | 78 | | | | | | | Peak-Hour Factor, PHF | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | | | Hourly Flow Rate, HFR (veh/h) | 0 | 0 | 84 | 0 | 0 | 0 | | | | Percent Heavy Vehicles | 2 | 0 | 2 | 0 | 0 | 0 | | | | Percent Grade (%) | | 0 | | | 0 | , | | | | Flared Approach | | N | | | N | | | | | Storage | | 0 | | | 0 | | | | | RT Channelized | | | 0 | | | 0 | | | | Lanes | 1 | 0 | 1 | 0 | 0 | 0 | | | | Configuration | L | | R | | | | | | | Delay, Queue Length, ar | nd Level of Serv | rice | | | | | | | |-------------------------|------------------|-----------------------------------|------|------|------|----|----|----| | Approach | Eastbound | d Westbound Northbound Southbound | | | | | | | | Movement | 1 | 4 | 7 | 8 | 9 | 10 | 11 | 12 | | Lane Configuration | | L | L | | R | | | | | v (veh/h) | | 48 | 0 | | 84 | | | | | C (m) (veh/h) | | 858 | 240 | | 411 | | | | | v/c | | 0.06 | 0.00 | | 0.20 | | | | | 95% queue length | | 0.18 | 0.00 | | 0.76 | | | | | Control Delay (s/veh) | | 9.4 | 20.0 | | 16.0 | | | | | LOS | | Α | С | | С | | | | | Approach Delay (s/veh) | | | | 16.0 | | | | , | | Approach LOS | | | | С | | | | | HCS+TM Version 5.21 Generated: 11/1/2008 3:53 PM | TWO-WAY STOP CONTROL SUMMARY | | | | | | | | | |--|---|---|--|--|--|--|--|--| | General Information | | Site Information | | | | | | | | Analyst
Agency/Co.
Date Performed
Analysis Time Period | J. Gormley
TPG Consulting, Inc.
10/30/2008
2020 summer weekend | Intersection Jurisdiction Analysis Year | Avila Beach at San Miguel
County of SLO
2020 | | | | | | | Project Description 06-10
East/West Street: Avila Be
Intersection Orientation: | | North/South Street: Sa
Study Period (hrs): 0.2 | | | | | | | | Vehicle Volumes and A | Adjustments | 3 | | | | | | | |-------------------------------|-------------|------------|------|--------|------------|------|--|--| | Major Street | | Eastbound | | | Westbound | | | | | Movement | 1 | 2 | 3 | 4 | 5 | 6 | | | | | L | T | R | L | T | R | | | | Volume (veh/h) | | 735 | 2 | 60 | 207 | | | | | Peak-Hour Factor, PHF | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | | | Hourly Flow Rate, HFR (veh/h) | 0 | 798 | 2 | 65 | 224 | 0 | | | | Percent Heavy Vehicles | 0 | | | 2 | | | | | | Median Type | | , | Und | ivided | | | | | | RT Channelized | | | 0 | | | 0 | | | | Lanes | 0 | 1 | 0 | 1 | 1 | 0 | | | | Configuration | | | TR | L | T | | | | | Upstream Signal | | 0 | | | 0 | | | | | Minor Street | | Northbound | | | Southbound | | | | | Movement | 7 | 8 | 9 | 10 | 11 | 12 | | | | | L | Т | R | L | Т | R | | | | Volume (veh/h) | 0 | | 94 | | | | | | | Peak-Hour Factor, PHF | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | | | Hourly Flow Rate, HFR (veh/h) | 0 | 0 | 102 | 0 | 0 | 0 | | | | Percent Heavy Vehicles | 2 | 0 | 2 | 0 | 0 | 0 | | | | Percent Grade (%) | | 0 | , | | 0 | , | | | | Flared Approach | | N | | | N | | | | | Storage | | 0 | | | 0 | | | | | RT Channelized | | | 0 | | | 0 | | | | Lanes | 1 | 0 | 1 | 0 | 0 | 0 | | | | Configuration | L | | R | | | | | | | Delay, Queue Length, ar | nd Level of Serv | rice | | | | | | | |-------------------------|------------------
---|------|-------|------------|--|----|----| | Approach | Eastbound | stbound Westbound Northbound Southbound | | | Northbound | | | | | Movement | 1 | 4 | 7 | 7 8 9 | | | 11 | 12 | | Lane Configuration | | L | L | | R | | | | | v (veh/h) | | 65 | 0 | | 102 | | | | | C (m) (veh/h) | | 823 | 201 | | 386 | | | | | v/c | | 0.08 | 0.00 | | 0.26 | | | | | 95% queue length | | 0.26 | 0.00 | | 1.05 | | | | | Control Delay (s/veh) | | 9.7 | 22.9 | | 17.6 | | | | | LOS | | Α | С | | С | | | | | Approach Delay (s/veh) | | | | 17.6 | • | | | | | Approach LOS | | | | С | | | | | HCS+TM Version 5.21 Generated: 11/1/2008 3:53 PM | TWO-WAY STOP CONTROL SUMMARY | | | | | | | | | | |---|---|---|---|--|--|--|--|--|--| | General Information | | Site Information | | | | | | | | | Analyst
Agency/Co.
Date Performed
Analysis Time Period | J. Gormley
TPG Consulting, Inc.
10/30/2008
2020 non summer weekday | Intersection
Jurisdiction
Analysis Year | Avila Beach at First
County of SLO
2020 | | | | | | | | Project Description 06-10 | 052.1 Avila Circulation Element | · | | | | | | | | | East/West Street: Avila Be | each Drive | North/South Street: First Street | | | | | | | | | Intersection Orientation: | East-West | Study Period (hrs): 0.2 | 25 | | | | | | | | Vehicle Volumes and | Adjustments | | | | | | | | | | Vehicle Volumes and | Adjustments | | | | | | | |-------------------------------|-------------|------------|------|------------|-----------|------|--| | Major Street | | Eastbound | | | Westbound | | | | Movement | 1 | 2 | 3 | 4 | 5 | 6 | | | | L | Τ | R | L | Т | R | | | Volume (veh/h) | | 673 | 38 | 21 | 167 | | | | Peak-Hour Factor, PHF | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | | Hourly Flow Rate, HFR (veh/h) | 0 | 731 | 41 | 22 | 181 | 0 | | | Percent Heavy Vehicles | 0 | | | 2 | | | | | Median Type | | | Undi | ivided | * | | | | RT Channelized | | | 0 | | | 0 | | | Lanes | 0 | 1 | 0 | 1 | 1 | 0 | | | Configuration | | | TR | L | T | | | | Upstream Signal | | 0 | | | 0 | | | | Minor Street | | Northbound | | Southbound | | | | | Movement | 7 | 8 | 9 | 10 | 11 | 12 | | | | L | T | R | L | T | R | | | Volume (veh/h) | 21 | | 23 | | | | | | Peak-Hour Factor, PHF | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | | Hourly Flow Rate, HFR (veh/h) | 22 | 0 | 24 | 0 | 0 | 0 | | | Percent Heavy Vehicles | 2 | 0 | 2 | 0 | 0 | 0 | | | Percent Grade (%) | | 0 | | | 0 | | | | Flared Approach | | N | | | N | | | | Storage | | 0 | | | 0 | | | | RT Channelized | | | 0 | | | 0 | | | Lanes | 1 | 0 | 1 | 0 | 0 | 0 | | | Configuration | L | | R | | | | | | Delay, Queue Length, ar | nd Level of Serv | ice | | | | | | | |-------------------------|------------------|------------------------------------|------|------|------|----|----|----| | Approach | Eastbound | nd Westbound Northbound Southbound | | | | | | | | Movement | 1 | 4 | 7 | 8 | 9 | 10 | 11 | 12 | | Lane Configuration | | L | L | | R | | | | | v (veh/h) | | 22 | 22 | | 24 | | | | | C (m) (veh/h) | | 843 | 271 | | 410 | | | | | v/c | | 0.03 | 0.08 | | 0.06 | | | | | 95% queue length | | 0.08 | 0.26 | | 0.19 | | | | | Control Delay (s/veh) | | 9.4 | 19.5 | | 14.3 | | | | | LOS | | Α | С | | В | | | | | Approach Delay (s/veh) | | | | 16.8 | • | | | , | | Approach LOS | | | | С | | | | | HCS+TM Version 5.21 Generated: 11/1/2008 3:54 PM | TWO-WAY STOP CONTROL SUMMARY | | | | | | | | | |---|---|---|---|--|--|--|--|--| | General Information | | Site Information | | | | | | | | Analyst
Agency/Co.
Date Performed
Analysis Time Period | J. Gormley
TPG Consulting, Inc.
10/30/2008
2020 summer weekend | Intersection Jurisdiction Analysis Year | Avila Beach at First
County of SLO
2020 | | | | | | | | 052.1 Avila Circulation Element | | | | | | | | | East/West Street: Avila Be
Intersection Orientation: E | | North/South Street: Fit Study Period (hrs): 0.2 | | | | | | | | Vehicle Volumes and | Adjustments | • | | | | | | |-------------------------------|-------------|------------|------|------------|-----------|------|--| | Major Street | | Eastbound | | | Westbound | | | | Movement | 1 | 2 | 3 | 4 | 5 | 6 | | | | L | T | R | L | Т | R | | | Volume (veh/h) | | 721 | 40 | 23 | 191 | | | | Peak-Hour Factor, PHF | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | | Hourly Flow Rate, HFR (veh/h) | 0 | 783 | 43 | 24 | 207 | 0 | | | Percent Heavy Vehicles | 0 | | | 2 | | | | | Median Type | | , | Undi | ivided | | | | | RT Channelized | | | 0 | | | 0 | | | Lanes | 0 | 1 | 0 | 1 | 1 | 0 | | | Configuration | | | TR | L | T | | | | Upstream Signal | | 0 | | | 0 | | | | Minor Street | | Northbound | | Southbound | | | | | Movement | 7 | 8 | 9 | 10 | 11 | 12 | | | | L | Т | R | L | Т | R | | | Volume (veh/h) | 24 | | 23 | | | | | | Peak-Hour Factor, PHF | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | | Hourly Flow Rate, HFR (veh/h) | 26 | 0 | 24 | 0 | 0 | 0 | | | Percent Heavy Vehicles | 2 | 0 | 2 | 0 | 0 | 0 | | | Percent Grade (%) | | 0 | | | 0 | , | | | Flared Approach | | N | | | N | | | | Storage | | 0 | | | 0 | | | | RT Channelized | | | 0 | | | 0 | | | Lanes | 1 | 0 | 1 | 0 | 0 | 0 | | | Configuration | L | | R | | | | | | nd Level of Serv | rice | | | | | | | |------------------|---|--------------|--|---|--|--|--| | Eastbound | stbound Westbound Northbound Southbound | | | Northbound | | | | | 1 | 4 | 7 | 7 8 9 | | | 11 | 12 | | | L | L | | R | | | | | | 24 | 26 | | 24 | | | | | | 805 | 242 | | 383 | | | | | | 0.03 | 0.11 | | 0.06 | | | | | | 0.09 | 0.36 | | 0.20 | | | | | | 9.6 | 21.7 | | 15.0 | | | | | | Α | С | | С | | | | | | | | 18.5 | | | | , | | | | | С | | | | | | | Eastbound 1 | Eastbound 1 | Eastbound Westbound 1 4 7 L L 24 26 805 242 0.03 0.11 0.09 0.36 9.6 21.7 A C | Eastbound Westbound Northbound 1 4 7 8 L L L 24 26 242 0.03 0.11 0.09 0.09 0.36 0.09 9.6 21.7 0.09 18.5 | Eastbound Westbound Northbound 1 4 7 8 9 L L L R 24 26 24 383 0.03 0.11 0.06 0.09 0.36 0.20 9.6 21.7 15.0 A C C 18.5 | 1 4 7 8 9 10 L L R 24 26 24 805 242 383 0.03 0.11 0.06 0.09 0.36 0.20 9.6 21.7 15.0 A C C 18.5 | Eastbound Westbound Northbound Southbound 1 4 7 8 9 10 11 L L L R 24 26 24 26 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 </td | HCS+TM Version 5.21 Generated: 11/1/2008 3:54 PM | | ۶ | → | * | • | + | • | • | † | <i>></i> | / | ļ | 4 | |--|-------|----------|----------|------|-------|------|---------------|----------|-------------|----------|------|----------| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻሻ | † | | | ₽ | | 7 | | 7 | | | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | Leading Detector (ft) | 50 | 50 | | | 50 | | 50 | | 50 | | | | | Trailing Detector (ft) | 0 | 0 | • | 4.5 | 0 | • | 0 | | 0 | 4.5 | | • | | Turning Speed (mph) | 15 | 4.00 | 9 | 15 | 4.00 | 9 | 15 |
4.00 | 9 | 15 | 4.00 | 9 | | Lane Util. Factor | 0.97 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Frt | 0.050 | | | | 0.938 | | 0.050 | | 0.850 | | | | | Flt Protected | 0.950 | 4000 | ^ | 0 | 1717 | 0 | 0.950 | ^ | 4500 | 0 | 0 | 0 | | Satd. Flow (prot) | 3433 | 1863 | 0 | 0 | 1747 | 0 | 1770 | 0 | 1583 | 0 | 0 | 0 | | Flt Permitted | 0.950 | 1863 | 0 | 0 | 1747 | 0 | 0.950
1770 | 0 | 1583 | 0 | 0 | 0 | | Satd. Flow (perm) | 3433 | 1003 | 0
Yes | 0 | 1/4/ | Yes | 1770 | 0 | Yes | U | U | 0
Yes | | Right Turn on Red
Satd. Flow (RTOR) | | | 165 | | 28 | 165 | | | 5 | | | 165 | | Headway Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Link Speed (mph) | 1.00 | 30 | 1.00 | 1.00 | 30 | 1.00 | 1.00 | 30 | 1.00 | 1.00 | 30 | 1.00 | | Link Distance (ft) | | 497 | | | 494 | | | 245 | | | 232 | | | Travel Time (s) | | 11.3 | | | 11.2 | | | 5.6 | | | 5.3 | | | Volume (vph) | 328 | 50 | 0 | 0 | 30 | 26 | 37 | 0.0 | 5 | 0 | 0.5 | 0 | | Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | Adj. Flow (vph) | 357 | 54 | 0.52 | 0.52 | 33 | 28 | 40 | 0.52 | 5 | 0.52 | 0.32 | 0.52 | | Lane Group Flow (vph) | | 54 | 0 | 0 | 61 | 0 | 40 | 0 | 5 | 0 | 0 | 0 | | Turn Type | Prot | | J | Ū | 0. | _ | custom | - | custom | Ū | Ū | Ū | | Protected Phases | 7 | 4 | | | 8 | ` | 0000111 | | , 40.0111 | | | | | Permitted Phases | - | • | | | • | | 2 | | 2 | | | | | Detector Phases | 7 | 4 | | | 8 | | 2 | | 2 | | | | | Minimum Initial (s) | 4.0 | 4.0 | | | 4.0 | | 4.0 | | 4.0 | | | | | Minimum Split (s) | 8.5 | 20.5 | | | 20.5 | | 20.5 | | 20.5 | | | | | Total Split (s) | 20.6 | 45.5 | 0.0 | 0.0 | 24.9 | 0.0 | 24.5 | 0.0 | 24.5 | 0.0 | 0.0 | 0.0 | | Total Split (%) | | 65.0% | 0.0% | 0.0% | 35.6% | 0.0% | 35.0% | | 35.0% | 0.0% | 0.0% | 0.0% | | Maximum Green (s) | 16.1 | 41.0 | | | 20.4 | | 20.0 | | 20.0 | | | | | Yellow Time (s) | 3.5 | 3.5 | | | 3.5 | | 3.5 | | 3.5 | | | | | All-Red Time (s) | 1.0 | 1.0 | | | 1.0 | | 1.0 | | 1.0 | | | | | Lead/Lag | Lag | | | | Lead | | | | | | | | | Lead-Lag Optimize? | Yes | | | | Yes | | | | | | | | | Vehicle Extension (s) | 3.0 | 3.0 | | | 3.0 | | 3.0 | | 3.0 | | | | | Recall Mode | None | C-Max | | | None | | Min | | Min | | | | | Walk Time (s) | | 5.0 | | | 5.0 | | 5.0 | | 5.0 | | | | | Flash Dont Walk (s) | | 11.0 | | | 11.0 | | 11.0 | | 11.0 | | | | | Pedestrian Calls (#/hr) | | 0 | | | 0 | | 0 | | 0 | | | | | Act Effct Green (s) | 21.7 | 54.8 | | | 27.7 | | 7.2 | | 7.2 | | | | | Actuated g/C Ratio | 0.31 | 0.78 | | | 0.40 | | 0.10 | | 0.10 | | | | | v/c Ratio | 0.34 | 0.04 | | | 0.09 | | 0.22 | | 0.03 | | | | | Control Delay | 13.1 | 1.5 | | | 11.9 | | 31.0 | | 18.0 | | | | | Queue Delay | 0.0 | 0.0 | | | 0.0 | | 0.0 | | 0.0 | | | | | Total Delay | 13.1 | 1.5 | | | 11.9 | | 31.0 | | 18.0 | | | | | LOS | В | Α | | | В | | С | | В | | | | | Approach Delay | | 11.6 | | | 11.9 | | | | | | | | | Approach LOS | | В | | | В | | | | | | | | | | ۶ | → | \rightarrow | • | • | • | 4 | † | / | > | ţ | 4 | |-------------------------|------|----------|---------------|-----|------|-----|------|----------|------|-------------|-----|-----| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Queue Length 50th (ft) | 15 | 1 | | | 10 | | 16 | | 0 | | | | | Queue Length 95th (ft) | 40 | m6 | | | 35 | | 42 | | 9 | | | | | Internal Link Dist (ft) | | 417 | | | 414 | | | 165 | | | 152 | | | Turn Bay Length (ft) | | | | | | | | | | | | | | Base Capacity (vph) | 1185 | 1458 | | | 714 | | 518 | | 467 | | | | | Starvation Cap Reductn | 0 | 0 | | | 0 | | 0 | | 0 | | | | | Spillback Cap Reductn | 0 | 0 | | | 0 | | 0 | | 0 | | | | | Storage Cap Reductn | 0 | 0 | | | 0 | | 0 | | 0 | | | | | Reduced v/c Ratio | 0.30 | 0.04 | | | 0.09 | | 0.08 | | 0.01 | | | | | Intersection Summary | | | | | | | | | | | | | Area Type: Other Cycle Length: 70 Actuated Cycle Length: 70 Offset: 54 (77%), Referenced to phase 4:EBT, Start of Green Natural Cycle: 55 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.34 Intersection Signal Delay: 13.2 Intersection Capacity Utilization 38.9% Intersection LOS: B ICU Level of Service A Analysis Period (min) 15 m Volume for 95th percentile queue is metered by upstream signal. Splits and Phases: 1: San Luis Bay Drive & US 101 NB ramps | | ۶ | → | • | • | ← | • | 4 | † | <i>></i> | / | ļ | 1 | |-------------------------|-------------|-------------|------|------|--------------|------|-------------|----------|-------------|----------|------|------| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ቪቪ | † | | | (| | * | | 7 | | | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | Leading Detector (ft) | 50 | 50 | | | 50 | | 50 | | 50 | | | | | Trailing Detector (ft) | 0 | 0 | | | 0 | | 0 | | 0 | | | | | Turning Speed (mph) | 15 | | 9 | 15 | | 9 | 15 | | 9 | 15 | | 9 | | Lane Util. Factor | 0.97 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Frt | | | | | 0.937 | | | | 0.850 | | | | | Flt Protected | 0.950 | | | | | | 0.950 | | | | | | | Satd. Flow (prot) | 3433 | 1863 | 0 | 0 | 1745 | 0 | 1770 | 0 | 1583 | 0 | 0 | 0 | | Flt Permitted | 0.950 | | | | | | 0.950 | | | | | | | Satd. Flow (perm) | 3433 | 1863 | 0 | 0 | 1745 | 0 | 1770 | 0 | 1583 | 0 | 0 | 0 | | Right Turn on Red | | | Yes | | | Yes | | | Yes | | | Yes | | Satd. Flow (RTOR) | | | | | 40 | | | | 8 | | | | | Headway Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Link Speed (mph) | | 30 | | | 30 | | | 30 | | | 30 | | | Link Distance (ft) | | 497 | | | 494 | | | 245 | | | 232 | | | Travel Time (s) | | 11.3 | | | 11.2 | | | 5.6 | | | 5.3 | | | Volume (vph) | 454 | 71 | 0 | 0 | 42 | 37 | 52 | 0 | 7 | 0 | 0 | 0 | | Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | Adj. Flow (vph) | 493 | 77 | 0 | 0 | 46 | 40 | 57 | 0 | 8 | 0 | 0 | 0 | | Lane Group Flow (vph) | 493 | 77 | 0 | 0 | 86 | 0 | 57 | 0 | 8 | 0 | 0 | 0 | | Turn Type | Prot | | | | | C | custom | C | custom | | | | | Protected Phases | 7 | 4 | | | 8 | | | | | | | | | Permitted Phases | | | | | | | 2 | | 2 | | | | | Detector Phases | 7 | 4 | | | 8 | | 2 | | 2 | | | | | Minimum Initial (s) | 4.0 | 4.0 | | | 4.0 | | 4.0 | | 4.0 | | | | | Minimum Split (s) | 8.5 | 20.5 | | | 20.5 | | 20.5 | | 20.5 | | | | | Total Split (s) | 23.4 | 46.5 | 0.0 | 0.0 | 23.1 | 0.0 | 23.5 | 0.0 | 23.5 | 0.0 | 0.0 | 0.0 | | Total Split (%) | 33.4% | | 0.0% | 0.0% | 33.0% | 0.0% | 33.6% | 0.0% | 33.6% | 0.0% | 0.0% | 0.0% | | Maximum Green (s) | 18.9 | 42.0 | | | 18.6 | | 19.0 | | 19.0 | | | | | Yellow Time (s) | 3.5 | 3.5 | | | 3.5 | | 3.5 | | 3.5 | | | | | All-Red Time (s) | 1.0 | 1.0 | | | 1.0 | | 1.0 | | 1.0 | | | | | Lead/Lag | Lag | | | | Lead | | | | | | | | | Lead-Lag Optimize? | Yes | 0.0 | | | Yes | | 2.0 | | 2.0 | | | | | Vehicle Extension (s) | 3.0 | 3.0 | | | 3.0 | | 3.0 | | 3.0 | | | | | Recall Mode | none | C-Max | | | None | | Min | | Min | | | | | Walk Time (s) | | 5.0 | | | 5.0 | | 5.0 | | 5.0 | | | | | Flash Dont Walk (s) | | 11.0 | | | 11.0 | | 11.0 | | 11.0 | | | | | Pedestrian Calls (#/hr) | 26.4 | 0 | | | 0 | | 0 | | 0 | | | | | Act Effct Green (s) | 26.4 | 54.4 | | | 27.9 | | 7.6 | | 7.6 | | | | | Actuated g/C Ratio | 0.38 | 0.78 | | | 0.40 | | 0.11 | | 0.11 | | | | | v/c Ratio | 0.38 | 0.05 | | | 0.12 | | 0.30 | | 0.04 | | | | | Control Delay | 11.8 | 1.7 | | | 12.4 | | 31.8 | | 16.3 | | | | | Queue Delay | 0.0
11.8 | 0.0
1.7 | | | 0.0
12.4 | | 0.0
31.8 | | 0.0
16.3 | | | | | Total Delay
LOS | 11.0
B | 1. <i>7</i> | | | 12.4
B | | 31.0
C | | 16.3
B | | | | | Approach Delay | Б | 10.4 | | | 12.4 | | C | | D | | | | | Approach LOS | | 10.4
B | | | 12.4
B | | | | | | | | | Approach LOO | | ט | | | ט | | | | | | | | 2020 Summer 11/1/2008 | | ၨ | - | \rightarrow | • | ← | • | \triangleleft | † | ~ | - | ļ | 4 | |-------------------------|------|------|---------------|-----|------|-----|-----------------|----------|------|-----|-----|-----| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Queue Length 50th (ft) | 38 | 6 | | | 15 | | 23 | | 0 | | | | | Queue Length 95th (ft) | 63 | m5 | | | 45 | | 53 | | 11 | | | | | Internal Link Dist (ft) | | 417 | | | 414 | | | 165 | | | 152 | | | Turn Bay Length (ft) | | | | | | | | | | | | | | Base Capacity (vph) | 1371 | 1448 | | | 721 | | 493 | | 447 | | | | | Starvation Cap Reductn | 0 | 0 | | | 0 | | 0 | | 0 | | | | | Spillback Cap Reductn | 0 | 0 | | | 0 | | 0 | | 0 | | | | | Storage Cap Reductn | 0 | 0 | | | 0 | | 0 | | 0 | | | | | Reduced v/c Ratio | 0.36 | 0.05 | | | 0.12 | | 0.12 | | 0.02 | | | | | Intersection Summary | | | | | | | | | | | | | Intersection Summary Area Type: Other Cycle Length: 70 Actuated Cycle Length: 70 Offset: 56 (80%), Referenced to phase 4:EBT, Start of Green Natural Cycle: 55 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.38 Intersection Signal Delay: 12.4 Intersection Capacity Utilization 48.8% Intersection LOS: B ICU Level of Service A Analysis Period (min) 15 m Volume for 95th percentile queue is metered by upstream signal. Splits and Phases: 1: San Luis Bay Drive & US 101 NB ramps | | • | → | • | • | + | • | • | † | ~ | / | + | -√ | |--|-------|-----------|-----------|-----------|-----------|-------|-------|----------|-------|-----------|----------|-----------| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane
Configurations | 4000 | 1000 | 1000 | 1000 | 1000 | 4000 | 4000 | 4000 | 4000 | 1000 | 4000 | * | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost Time (s) | 4.0 | 4.0
50 | 4.0
50 | 4.0
50 | 4.0
50 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0
50 | 4.0 | 4.0
50 | | Leading Detector (ft) Trailing Detector (ft) | | 0 | 0 | 0 | 0 | | | | | 0 | | 0 | | Turning Speed (mph) | 15 | U | 9 | 15 | U | 9 | 15 | | 9 | 15 | | 9 | | Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Frt | 1.00 | 1.00 | 0.850 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.850 | | Flt Protected | | | 0.000 | 0.950 | | | | | | 0.950 | | 0.000 | | Satd. Flow (prot) | 0 | 1863 | 1583 | 1770 | 1863 | 0 | 0 | 0 | 0 | 1770 | 0 | 1583 | | Flt Permitted | _ | | | 0.628 | | _ | | | | 0.950 | - | | | Satd. Flow (perm) | 0 | 1863 | 1583 | 1170 | 1863 | 0 | 0 | 0 | 0 | 1770 | 0 | 1583 | | Right Turn on Red | | | Yes | | | Yes | | | Yes | | | Yes | | Satd. Flow (RTOR) | | | 242 | | | | | | | | | 385 | | Headway Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Link Speed (mph) | | 30 | | | 30 | | | 30 | | | 30 | | | Link Distance (ft) | | 164 | | | 497 | | | 186 | | | 230 | | | Travel Time (s) | | 3.7 | | | 11.3 | | | 4.2 | | | 5.2 | | | Volume (vph) | 0 | 166 | 223 | 30 | 37 | 0 | 0 | 0 | 0 | 212 | 0 | 354 | | Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | Adj. Flow (vph) | 0 | 180 | 242 | 33 | 40 | 0 | 0 | 0 | 0 | 230 | 0 | 385 | | Lane Group Flow (vph) | 0 | 180 | 242 | 33 | 40 | 0 | 0 | 0 | 0 | 230 | 0 | 385 | | Turn Type | | 4 | Perm | Perm | 0 | | | | (| custom | C | custom | | Protected Phases | | 4 | 4 | 0 | 8 | | | | | • | | • | | Permitted Phases Detector Phases | | 1 | 4 | 8 | 8 | | | | | 6 | | 6 | | Minimum Initial (s) | | 4
4.0 | 4.0 | 8
4.0 | 4.0 | | | | | 6
4.0 | | 6
4.0 | | Minimum Split (s) | | 20.5 | 20.5 | 20.5 | 20.5 | | | | | 20.5 | | 20.5 | | Total Split (s) | 0.0 | 31.7 | 31.7 | 31.7 | 31.7 | 0.0 | 0.0 | 0.0 | 0.0 | 38.3 | 0.0 | 38.3 | | Total Split (%) | | 45.3% | | | 45.3% | 0.0% | 0.0% | 0.0% | | 54.7% | | 54.7% | | Maximum Green (s) | 0.070 | 27.2 | 27.2 | 27.2 | 27.2 | 0.070 | 0.070 | 0.070 | 0.070 | 33.8 | 0.070 | 33.8 | | Yellow Time (s) | | 3.5 | 3.5 | 3.5 | 3.5 | | | | | 3.5 | | 3.5 | | All-Red Time (s) | | 1.0 | 1.0 | 1.0 | 1.0 | | | | | 1.0 | | 1.0 | | Lead/Lag | | | | | | | | | | | | | | Lead-Lag Optimize? | | | | | | | | | | | | | | Vehicle Extension (s) | | 3.0 | 3.0 | 3.0 | 3.0 | | | | | 3.0 | | 3.0 | | Recall Mode | | C-Max | C-Max | C-Max | C-Max | | | | | Min | | Min | | Walk Time (s) | | 5.0 | 5.0 | 5.0 | 5.0 | | | | | 5.0 | | 5.0 | | Flash Dont Walk (s) | | 11.0 | 11.0 | 11.0 | 11.0 | | | | | 11.0 | | 11.0 | | Pedestrian Calls (#/hr) | | 0 | 0 | 0 | 0 | | | | | 0 | | 0 | | Act Effct Green (s) | | 47.7 | 47.7 | 47.7 | 47.7 | | | | | 14.3 | | 14.3 | | Actuated g/C Ratio | | 0.68 | 0.68 | 0.68 | 0.68 | | | | | 0.20 | | 0.20 | | v/c Ratio | | 0.14 | 0.21 | 0.04 | 0.03 | | | | | 0.64 | | 0.61 | | Control Delay | | 3.7 | 0.5 | 2.0 | 1.9 | | | | | 33.0 | | 7.2 | | Queue Delay | | 1.0 | 0.7 | 0.0 | 0.0 | | | | | 0.0 | | 0.0 | | Total Delay | | 4.7 | 1.2 | 2.0 | 1.9 | | | | | 33.0 | | 7.2 | | LOS | | A | Α | Α | Α | | | | | С | | Α | | Approach Delay | | 2.7 | | | 1.9 | | | | | | | | | Approach LOS | | Α | | | Α | | | | | | | | | | ၨ | → | • | • | ← | • | • | † | / | \ | Ţ | 4 | |-------------------------|-----|----------|------|------|----------|-----|-----|----------|----------|----------|-----|------| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Queue Length 50th (ft) | | 19 | 0 | 2 | 2 | | | | | 91 | | 0 | | Queue Length 95th (ft) | | 36 | 3 | 5 | 6 | | | | | 141 | | 57 | | Internal Link Dist (ft) | | 84 | | | 417 | | | 106 | | | 150 | | | Turn Bay Length (ft) | | | | | | | | | | | | | | Base Capacity (vph) | | 1271 | 1157 | 798 | 1271 | | | | | 867 | | 972 | | Starvation Cap Reductn | | 863 | 622 | 0 | 0 | | | | | 0 | | 0 | | Spillback Cap Reductn | | 0 | 0 | 0 | 0 | | | | | 0 | | 0 | | Storage Cap Reductn | | 0 | 0 | 0 | 0 | | | | | 0 | | 0 | | Reduced v/c Ratio | | 0.44 | 0.45 | 0.04 | 0.03 | | | | | 0.27 | | 0.40 | | Internetion Commons | | | | | | | | | | | | | Area Type: Other Cycle Length: 70 Actuated Cycle Length: 70 Offset: 32 (46%), Referenced to phase 4:EBT and 8:WBTL, Start of Green Natural Cycle: 45 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.64 Intersection Signal Delay: 10.5 Intersection LOS: B Intersection Capacity Utilization 38.9% ICU Level of Service A Analysis Period (min) 15 Splits and Phases: 2: San Luis Bay Drive & US 101 SB ramps | | ၨ | → | • | • | • | • | 4 | † | / | > | ļ | 4 | |--------------------------------------|------|---------------|-------|-------|----------|-------------|-------------|------|----------|---------------|------|---------------| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | † | 7 | ሻ | † | | | | | ሻ | | 7 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | Leading Detector (ft) | | 50 | 50 | 50 | 50 | | | | | 50 | | 50 | | Trailing Detector (ft) | 45 | 0 | 0 | 0 | 0 | 0 | 45 | | 0 | 0 | | 0 | | Turning Speed (mph) | 15 | 4.00 | 9 | 15 | 4.00 | 9 | 15 | 4.00 | 9 | 15 | 4.00 | 9 | | Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Frt
Flt Protected | | | 0.850 | 0.950 | | | | | | 0.950 | | 0.850 | | Satd. Flow (prot) | 0 | 1863 | 1583 | 1770 | 1863 | 0 | 0 | 0 | 0 | 1770 | 0 | 1583 | | Flt Permitted | U | 1003 | 1303 | 0.532 | 1003 | U | U | U | U | 0.950 | U | 1303 | | Satd. Flow (perm) | 0 | 1863 | 1583 | 991 | 1863 | 0 | 0 | 0 | 0 | 1770 | 0 | 1583 | | Right Turn on Red | U | 1000 | Yes | 331 | 1000 | Yes | U | U | Yes | 1770 | U | Yes | | Satd. Flow (RTOR) | | | 336 | | | 100 | | | 100 | | | 533 | | Headway Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Link Speed (mph) | | 30 | | | 30 | | | 30 | | | 30 | | | Link Distance (ft) | | 164 | | | 497 | | | 186 | | | 230 | | | Travel Time (s) | | 3.7 | | | 11.3 | | | 4.2 | | | 5.2 | | | Volume (vph) | 0 | 230 | 309 | 42 | 52 | 0 | 0 | 0 | 0 | 295 | 0 | 490 | | Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | Adj. Flow (vph) | 0 | 250 | 336 | 46 | 57 | 0 | 0 | 0 | 0 | 321 | 0 | 533 | | Lane Group Flow (vph) | 0 | 250 | 336 | 46 | 57 | 0 | 0 | 0 | 0 | 321 | 0 | 533 | | Turn Type | | | Perm | Perm | | | | | (| custom | C | custom | | Protected Phases | | 4 | | _ | 8 | | | | | | | | | Permitted Phases | | | 4 | 8 | | | | | | 6 | | 6 | | Detector Phases | | 4 | 4 | 8 | 8 | | | | | 6 | | 6 | | Minimum Initial (s) | | 4.0 | 4.0 | 4.0 | 4.0 | | | | | 4.0 | | 4.0 | | Minimum Split (s) | 0.0 | 20.5 | 20.5 | 20.5 | 20.5 | 0.0 | 0.0 | 0.0 | 0.0 | 20.5 | 0.0 | 20.5 | | Total Split (s) | 0.0 | 30.0
42.9% | 30.0 | 30.0 | 30.0 | 0.0
0.0% | 0.0
0.0% | 0.0% | 0.0 | 40.0
57.1% | 0.0 | 40.0
57.1% | | Total Split (%)
Maximum Green (s) | 0.0% | 25.5 | 25.5 | 25.5 | 25.5 | 0.0% | 0.0% | 0.0% | 0.0% | 35.5 | 0.0% | 35.5 | | Yellow Time (s) | | 3.5 | 3.5 | 3.5 | 3.5 | | | | | 3.5 | | 3.5 | | All-Red Time (s) | | 1.0 | 1.0 | 1.0 | 1.0 | | | | | 1.0 | | 1.0 | | Lead/Lag | | 1.0 | 1.0 | 1.0 | 1.0 | | | | | 1.0 | | 1.0 | | Lead-Lag Optimize? | | | | | | | | | | | | | | Vehicle Extension (s) | | 3.0 | 3.0 | 3.0 | 3.0 | | | | | 3.0 | | 3.0 | | Recall Mode | | C-Max | | | | | | | | Min | | Min | | Walk Time (s) | | 5.0 | 5.0 | 5.0 | 5.0 | | | | | 5.0 | | 5.0 | | Flash Dont Walk (s) | | 11.0 | 11.0 | 11.0 | 11.0 | | | | | 11.0 | | 11.0 | | Pedestrian Calls (#/hr) | | 0 | 0 | 0 | 0 | | | | | 0 | | 0 | | Act Effct Green (s) | | 43.7 | 43.7 | 43.7 | 43.7 | | | | | 18.3 | | 18.3 | | Actuated g/C Ratio | | 0.62 | 0.62 | 0.62 | 0.62 | | | | | 0.26 | | 0.26 | | v/c Ratio | | 0.21 | 0.30 | 0.07 | 0.05 | | | | | 0.69 | | 0.66 | | Control Delay | | 5.2 | 0.7 | 2.4 | 2.2 | | | | | 30.7 | | 6.2 | | Queue Delay | | 1.1 | 0.7 | 0.0 | 0.0 | | | | | 0.0 | | 0.1 | | Total Delay | | 6.3 | 1.4 | 2.4 | 2.2 | | | | | 30.7 | | 6.3 | | LOS | | A | Α | Α | Α | | | | | С | | Α | | Approach Delay | | 3.5 | | | 2.3 | | | | | | | | | Approach LOS | | A | | | A | | | | | | | | 2020 Summer 11/1/2008 | | • | → | • | • | • | • | 1 | † | / | > | ļ | 4 | |-------------------------|-----|----------|------|------|------|-----|-----|----------|----------|-------------|-----|------| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Queue Length 50th (ft) | | 32 | 0 | 2 | 3 | • | | | • | 124 | | 0 | | Queue Length 95th (ft) | | 48 | 2 | 6 | 7 | | | | | 172 | | 57 | | Internal Link Dist (ft) | | 84 | | | 417 | | | 106 | | | 150 | | | Turn Bay Length (ft) | | | | | | | | | | | | | | Base Capacity (vph) | | 1164 | 1115 | 619 | 1164 | | | | | 910 | | 1073 | | Starvation Cap Reductn | | 683 | 464 | 0 | 0 | | | | | 0 | | 0 | | Spillback Cap Reductn | | 0 | 0 | 0 | 0 | | | | | 0 | | 46 | | Storage Cap Reductn | | 0 | 0 | 0 | 0 | | | | | 0 | | 0 | | Reduced v/c Ratio | | 0.52 | 0.52 | 0.07 | 0.05 | | | | | 0.35 | | 0.52 | | 1. (| | | | | | | | | | | | | Intersection Summary Area Type: Other Cycle Length: 70 Actuated Cycle Length: 70 Offset: 40 (57%), Referenced to phase 4:EBT and 8:WBTL, Start of Green Natural Cycle: 45 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.69 Intersection Signal Delay: 10.0 Intersection Capacity Utilization 48.8%
Intersection LOS: B ICU Level of Service A Analysis Period (min) 15 Splits and Phases: 2: San Luis Bay Drive & US 101 SB ramps | | ٠ | → | • | • | • | • | 4 | † | / | > | ļ | 4 | |-----------------------------|-----------|------------|------|-----------|------------|------|-----------|--------------|------|-------------|-----------|------| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | ∱ ⊅ | | 16.5% | ∱ ∱ | | ሻ | eî | | ሻ | f) | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | Leading Detector (ft) | 50 | 50 | | 50 | 50 | | 50 | 50 | | 50 | 50 | | | Trailing Detector (ft) | 0 | 0 | | 0 | 0 | | 0 | 0 | | 0 | 0 | | | Turning Speed (mph) | 15 | | 9 | 15 | | 9 | 15 | | 9 | 15 | | 9 | | Lane Util. Factor | 1.00 | 0.95 | 0.95 | 0.97 | 0.95 | 0.95 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Frt | | 0.966 | | | 0.967 | | | 0.863 | | | 0.921 | | | Flt Protected | 0.950 | | | 0.950 | | | 0.950 | | | 0.950 | | | | Satd. Flow (prot) | 1770 | 3419 | 0 | 3433 | 3422 | 0 | 1770 | 1608 | 0 | 1770 | 1716 | 0 | | Flt Permitted | 0.950 | | | 0.950 | | | 0.950 | | | 0.950 | | | | Satd. Flow (perm) | 1770 | 3419 | 0 | 3433 | 3422 | 0 | 1770 | 1608 | 0 | 1770 | 1716 | 0 | | Right Turn on Red | | | Yes | | | Yes | | | Yes | | | Yes | | Satd. Flow (RTOR) | | 51 | | | 49 | | | 166 | | | 18 | | | Headway Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Link Speed (mph) | | 30 | | | 30 | | | 30 | | | 30 | | | Link Distance (ft) | | 498 | | | 164 | | | 319 | | | 317 | | | Travel Time (s) | | 11.3 | | | 3.7 | | | 7.3 | | | 7.2 | | | Volume (vph) | 18 | 185 | 54 | 156 | 183 | 52 | 53 | 15 | 153 | 51 | 15 | 17 | | Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | Adj. Flow (vph) | 20 | 201 | 59 | 170 | 199 | 57 | 58 | 16 | 166 | 55 | 16 | 18 | | Lane Group Flow (vph) | 20 | 260 | 0 | 170 | 256 | 0 | 58 | 182 | 0 | 55 | 34 | 0 | | Turn Type | Prot | | | Prot | _ | | Prot | _ | | Prot | | | | Protected Phases | 7 | 4 | | 3 | 8 | | 5 | 2 | | 1 | 6 | | | Permitted Phases | _ | | | | _ | | _ | _ | | | | | | Detector Phases | 7 | 4 | | 3 | 8 | | 5 | 2 | | 1 | 6 | | | Minimum Initial (s) | 4.0 | 4.0 | | 4.0 | 4.0 | | 4.0 | 4.0 | | 4.0 | 4.0 | | | Minimum Split (s) | 8.5 | 20.5 | | 8.5 | 20.5 | | 20.5 | 20.5 | | 8.5 | 20.5 | | | Total Split (s) | 8.5 | 20.5 | 0.0 | 8.5 | 20.5 | 0.0 | 20.5 | 30.6 | 0.0 | 10.4 | 20.5 | 0.0 | | Total Split (%) | 12.1% | | 0.0% | 12.1% | | 0.0% | 29.3% | | 0.0% | 14.9% | | 0.0% | | Maximum Green (s) | 4.0 | 16.0 | | 4.0 | 16.0 | | 16.0 | 26.1 | | 5.9 | 16.0 | | | Yellow Time (s) | 3.5 | 3.5 | | 3.5 | 3.5 | | 3.5 | 3.5 | | 3.5 | 3.5 | | | All-Red Time (s) | 1.0 | 1.0 | | 1.0 | 1.0 | | 1.0 | 1.0 | | 1.0 | 1.0 | | | Lead/Lag | Lag | Lead | | Lag | Lead | | Lag | Lag | | Lead | Lead | | | Lead-Lag Optimize? | Yes | Yes | | | Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | 3.0 | | 3.0 | 3.0 | | 3.0 | 3.0 | | | Recall Mode | none | C-Max | | none | C-Max | | Min | Min | | None | Min | | | Walk Time (s) | | 5.0 | | | 5.0 | | 5.0 | 5.0 | | | 5.0 | | | Flash Dont Walk (s) | | 11.0 | | | 11.0 | | 11.0 | 11.0 | | | 11.0 | | | Pedestrian Calls (#/hr) | 1 E | 0 | | 1 E | 0 | | 0 | 12.0 | | 6.2 | 0 | | | Act Effct Green (s) | 4.5 | 34.5 | | 4.5 | 41.3 | | 8.1 | 12.8
0.18 | | 6.3 | 6.9 | | | Actuated g/C Ratio | 0.06 | 0.49 | | 0.06 | 0.59 | | 0.12 | | | 0.09 | 0.10 | | | v/c Ratio | 0.18 | 0.15 | | 0.77 | 0.13 | | 0.28 | 0.42 | | 0.34 | 0.18 | | | Control Delay | 34.8 | 8.7 | | 52.1 | 5.1 | | 31.2 | 9.5 | | 36.2 | 20.7 | | | Queue Delay | 0.0 | 0.0 | | 0.0 | 0.4
5.5 | | 0.0 | 0.0 | | 0.0 | 0.0 | | | Total Delay
LOS | 34.8
C | 8.7 | | 52.1
D | 5.5 | | 31.2
C | 9.5 | | 36.2
D | 20.7
C | | | | C | A
10.5 | | D | A
24.1 | | C | A
14.7 | | D | 30.3 | | | Approach Delay Approach LOS | | 10.5
B | | | 24.1
C | | | 14.7
B | | | 30.3
C | | | Apploacii LOS | | D | | | C | | | D | | | U | | | | ၨ | → | • | • | • | • | • | † | / | > | ļ | 1 | |-------------------------|------|----------|-----|------|------|-----|------|----------|----------|-------------|------|-----| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Queue Length 50th (ft) | 8 | 23 | | 38 | 15 | | 23 | 6 | | 23 | 6 | | | Queue Length 95th (ft) | 28 | 48 | | m#81 | 34 | | 53 | 55 | | 55 | 30 | | | Internal Link Dist (ft) | | 418 | | | 84 | | | 239 | | | 237 | | | Turn Bay Length (ft) | | | | | | | | | | | | | | Base Capacity (vph) | 114 | 1709 | | 221 | 2037 | | 417 | 714 | | 162 | 418 | | | Starvation Cap Reductn | 0 | 0 | | 0 | 1334 | | 0 | 0 | | 0 | 0 | | | Spillback Cap Reductn | 0 | 0 | | 0 | 0 | | 0 | 0 | | 0 | 0 | | | Storage Cap Reductn | 0 | 0 | | 0 | 0 | | 0 | 0 | | 0 | 0 | | | Reduced v/c Ratio | 0.18 | 0.15 | | 0.77 | 0.36 | | 0.14 | 0.25 | | 0.34 | 0.08 | | Area Type: Other Cycle Length: 70 Actuated Cycle Length: 70 Offset: 64 (91%), Referenced to phase 4:EBT and 8:WBT, Start of Green Natural Cycle: 70 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.77 Intersection Signal Delay: 18.8 Intersection Signal Delay: 18.8 Intersection LOS: B Intersection Capacity Utilization 38.2% ICU Level of Service A Analysis Period (min) 15 Queue shown is maximum after two cycles. m Volume for 95th percentile queue is metered by upstream signal. Splits and Phases: 3: San Luis Bay Drive & Ontario Road ^{# 95}th percentile volume exceeds capacity, queue may be longer. | | ۶ | → | • | • | ← | • | 4 | † | / | > | ţ | 4 | |--|------------|-------------|------|------------|------------|------|------------|------------|------|-------------|-------------|------| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | ∱ ∱ | | 1,1 | ተ ኈ | | ሻ | 4 | | ሻ | f) | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | Leading Detector (ft) | 50 | 50 | | 50 | 50 | | 50 | 50 | | 50 | 50 | | | Trailing Detector (ft) | 0 | 0 | | 0 | 0 | | 0 | 0 | | 0 | 0 | | | Turning Speed (mph) | 15 | | 9 | 15 | | 9 | 15 | | 9 | 15 | | 9 | | Lane Util. Factor | 1.00 | 0.95 | 0.95 | 0.97 | 0.95 | 0.95 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Frt | | 0.966 | | | 0.967 | | | 0.863 | | | 0.920 | | | Flt Protected | 0.950 | | | 0.950 | | _ | 0.950 | | _ | 0.950 | | _ | | Satd. Flow (prot) | 1770 | 3419 | 0 | 3433 | 3422 | 0 | 1770 | 1608 | 0 | 1770 | 1714 | 0 | | Flt Permitted | 0.950 | | | 0.950 | | _ | 0.950 | | _ | 0.950 | | _ | | Satd. Flow (perm) | 1770 | 3419 | 0 | 3433 | 3422 | 0 | 1770 | 1608 | 0 | 1770 | 1714 | 0 | | Right Turn on Red | | | Yes | | | Yes | | | Yes | | | Yes | | Satd. Flow (RTOR) | | 52 | | | 48 | | | 230 | | | 26 | | | Headway Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Link Speed (mph) | | 30 | | | 30 | | | 30 | | | 30 | | | Link Distance (ft) | | 498 | | | 164 | | | 319 | | | 317 | | | Travel Time (s) | | 11.3 | | | 3.7 | | | 7.3 | | | 7.2 | | | Volume (vph) | 25 | 256 | 76 | 217 | 254 | 71 | 73 | 20 | 212 | 71 | 21 | 24 | | Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | Adj. Flow (vph) | 27 | 278 | 83 | 236 | 276 | 77 | 79 | 22 | 230 | 77 | 23 | 26 | | Lane Group Flow (vph) | 27 | 361 | 0 | 236 | 353 | 0 | 79 | 252 | 0 | 77 | 49 | 0 | | Turn Type | Prot | | | Prot | • | | Prot | | | Prot | • | | | Protected Phases | 7 | 4 | | 3 | 8 | | 5 | 2 | | 1 | 6 | | | Permitted Phases | _ | | | • | • | | _ | • | | | • | | | Detector Phases | 7 | 4 | | 3 | 8 | | 5 | 2 | | 1 | 6 | | | Minimum Initial (s) | 4.0 | 4.0 | | 4.0 | 4.0 | | 4.0 | 4.0 | | 4.0 | 4.0 | | | Minimum Split (s) | 8.5 | 20.5 | 0.0 | 8.5 | 20.5 | 0.0 | 20.5 | 20.5 | 0.0 | 8.5 | 20.5 | 0.0 | | Total Split (s) | 8.5 | 20.5 | 0.0 | 8.5 | 20.5 | 0.0 | 20.5 | 29.7 | 0.0 | 11.3 | 20.5 | 0.0 | | Total Split (%) | 12.1% | | 0.0% | 12.1% | | 0.0% | 29.3% | | 0.0% | 16.1% | | 0.0% | | Maximum Green (s) | 4.0 | 16.0 | | 4.0 | 16.0 | | 16.0 | 25.2 | | 6.8 | 16.0 | | | Yellow Time (s) | 3.5 | 3.5 | | 3.5 | 3.5 | | 3.5 | 3.5 | | 3.5 | 3.5 | | | All-Red Time (s) | 1.0 | 1.0 | | 1.0 | 1.0 | | 1.0 | 1.0 | | 1.0 | 1.0 | | | Lead/Lag | Lead | Lead
Yes | | Lag | Lag
Yes | | Lag
Yes | Lag | | Lead
Yes | Lead
Yes | | | Lead-Lag Optimize? Vehicle Extension (s) | Yes
3.0 | 3.0 | | Yes
3.0 | 3.0 | | 3.0 | Yes
3.0 | | 3.0 | 3.0 | | | Recall Mode | | C-Max | | | C-Max | | Min | Min | | None | Min | | | Walk Time (s) | NOHE | 5.0 | | INOHE | 5.0 | | 5.0 | 5.0 | | NOHE | 5.0 | | | Flash Dont Walk (s) | | 11.0 | | | 11.0 | | 11.0 | 11.0 | | | 11.0 | | | Pedestrian Calls (#/hr) | | 0 | | | 0 | | 0 | 0 | | | 0 | | | Act Effct Green (s) | 7.1 | 33.5 | | 4.5 | 37.0 | | 8.9 | 11.0 | | 7.0 | 7.2 | | | Actuated g/C Ratio | 0.10 | 0.48 | | 0.06 | 0.53 | | 0.13 | 0.16 | | 0.10 | 0.10 | | | v/c Ratio | 0.15 | 0.40 | | 1.07 | 0.19 | | 0.15 | 0.10 | | 0.43 | 0.10 | | | Control Delay | 30.0 | 10.2 | | 108.3 | 8.5 | | 31.6 | 10.8 | | 37.5 | 20.2 | | | Queue Delay | 0.0 | 0.0 | | 0.0 | 0.8 | | 0.0 | 0.0 | | 0.2 | 0.0 | | | Total Delay | 30.0 | 10.2 | | 108.3 | 9.3 | | 31.6 | 10.8 | | 37.7 | 20.2 | | | LOS | 30.0
C | 10.2
B | | F | 9.5
A | | 31.0
C | 10.6 | | 37.7
D | 20.2
C | | | Approach Delay | C | 11.5 | | ' | 49.0 | | C | 15.7 | | ט | 30.9 | | | Approach LOS | | 11.3
B | | | 49.0
D | | | 13.7
B | | | 30.9
C | | | , (pprodori EOG | | ט | | | U | | |
ט | | | U | | | | ᄼ | → | \rightarrow | • | ← | • | • | † | / | - | ļ | 4 | |-------------------------|------|----------|---------------|-------|----------|-----|------|----------|-----|------|------|-----| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Queue Length 50th (ft) | 11 | 37 | | ~59 | 24 | | 32 | 9 | | 32 | 9 | | | Queue Length 95th (ft) | 32 | 71 | ı | m#120 | 64 | | 66 | 64 | | 71 | 37 | | | Internal Link Dist (ft) | | 418 | | | 84 | | | 239 | | | 237 | | | Turn Bay Length (ft) | | | | | | | | | | | | | | Base Capacity (vph) | 179 | 1663 | | 221 | 1832 | | 417 | 736 | | 185 | 424 | | | Starvation Cap Reductn | 0 | 0 | | 0 | 1148 | | 0 | 0 | | 0 | 0 | | | Spillback Cap Reductn | 0 | 0 | | 0 | 0 | | 0 | 0 | | 6 | 0 | | | Storage Cap Reductn | 0 | 0 | | 0 | 0 | | 0 | 0 | | 0 | 0 | | | Reduced v/c Ratio | 0.15 | 0.22 | | 1.07 | 0.52 | | 0.19 | 0.34 | | 0.43 | 0.12 | | Area Type: Other Cycle Length: 70 Actuated Cycle Length: 70 Offset: 5 (7%), Referenced to phase 4:EBT and 8:WBT, Start of Green Natural Cycle: 70 Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.07 Intersection Signal Delay: 29.6 Intersection Capacity Utilization 47.1% Intersection LOS: C ICU Level of Service A Analysis Period (min) 15 ~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. m Volume for 95th percentile queue is metered by upstream signal. | TWO-WAY STOP CONTROL SUMMARY | | | | | | | | | |---|---|---|---|--|--|--|--|--| | General Information | | Site Information | | | | | | | | Analyst
Agency/Co.
Date Performed
Analysis Time Period | J. Gormley
TPG Consulting, Inc.
10/30/2008
2020 Non Summer | Intersection Jurisdiction Analysis Year | Avila Beach Drive at US 101
NB
Caltrans
2020 | | | | | | | Project Description 06-10 | 052.1 Avila Circulation Element | | | | | | | | | East/West Street: Avila Be | each Drive | North/South Street: US 101 NB ramps | | | | | | | | Intersection Orientation: East-West Study Period (hrs): 0.25 | | | | | | | | | | Vehicle Volumes and | Adjustments | | | | | | | | | ļ | | | | <u> </u> | | | | |-------------------------------|-------------|------------|------|------------|-----------|-------------|--| | Vehicle Volumes and | Adjustments | | | | | | | | Major Street | | Eastbound | | | Westbound | | | | Movement | 1 | 2 | 3 | 4 | 5 | 6 | | | | L | Т | R | L | Т | R | | | Volume (veh/h) | 20 | | | | 374 | 114 | | | Peak-Hour Factor, PHF | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | | Hourly Flow Rate, HFR (veh/h) | 21 | 0 | 0 | 0 | 406 | 123 | | | Percent Heavy Vehicles | 2 | | | 0 | | | | | Median Type | | | Und | ivided | , | , | | | RT Channelized | | | 0 | | | 0 | | | Lanes | 1 | 0 | 0 | 0 | 1 | 0 | | | Configuration | L | | | | | TR | | | Upstream Signal | | 0 | | | 0 | | | | Minor Street | | Northbound | | Southbound | | | | | Movement | 7 | 8 | 9 | 10 | 11 | 12 | | | | L | Т | R | L | Т | R | | | Volume (veh/h) | | | | | | | | | Peak-Hour Factor, PHF | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | | Hourly Flow Rate, HFR (veh/h) | 0 | 0 | 0 | 0 | 0 | 10 | | | Percent Heavy Vehicles | 0 | 0 | 0 | 0 | 0 | 2 | | | Percent Grade (%) | | 0 | | | 0 | • | | | Flared Approach | | N | | | N | | | | Storage | | 0 | | | 0 | | | | 5 | | | | | | | | | RT Channelized | | | 0 | | | 0 | | | | 0 | 0 | 0 | 0 | 0 | 0 | | | Delay, Queue Length, and Level of Service | | | | | | | | | | | |---|-----------|-----------|---|------------|---|------------|------|------|--|--| | Approach | Eastbound | Westbound | | Northbound | | Southbound | | | | | | Movement | 1 | 4 | 7 | 8 | 9 | 10 | 11 | 12 | | | | Lane Configuration | L | | | | | | | R | | | | v (veh/h) | 21 | | | | | | | 10 | | | | C (m) (veh/h) | 1038 | | | | | | | 595 | | | | v/c | 0.02 | | | | | | | 0.02 | | | | 95% queue length | 0.06 | | | | | | | 0.05 | | | | Control Delay (s/veh) | 8.5 | | | | | | | 11.2 | | | | LOS | Α | | | | | | | В | | | | Approach Delay (s/veh) | | | | | • | | 11.2 | | | | | Approach LOS | | | | | | | В | | | | HCS+TM Version 5.21 Generated: 11/1/2008 4:24 PM | General Information | | | | | | |---|---|---|---|--|--| | Analyst
Agency/Co.
Date Performed
Analysis Time Period | J. Gormley
TPG Consulting, Inc.
10/30/08
2020 Summer | Intersection Jurisdiction Analysis Year | Avila Beach Drive at US 101
NB
Caltrans
2020 | | | | | 052.1 Avila Circulation Element | J. | | | | | East/West Street: Avila Be | each Drive | North/South Street: US 101 NB ramps | | | | | Intersection Orientation: | East-West | Study Period (hrs): 0.2 | 25 | | | | , | | | | , , | | | | |--|-------------|------------------|-----------|------------|------------------|------------|--| | Vehicle Volumes and | Adjustments | | | | | | | | Major Street | | Eastbound | | | Westbound | | | | Movement | 1 | 2 | 3 | 4 | 5 | 6 | | | | L | T | R | L | Τ | R | | | Volume (veh/h) | 27 | | | | 518 | 159 | | | Peak-Hour Factor, PHF | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | | Hourly Flow Rate, HFR (veh/h) | 29 | 0 | 0 | 0 | 563 | 172 | | | Percent Heavy Vehicles | 2 | | | 0 | | | | | Median Type | | | Undi | ivided | | | | | RT Channelized | | | 0 | | | 0 | | | Lanes | 1 | 0 | 0 | 0 | 1 | 0 | | | Configuration | L | | | | | TR | | | Upstream Signal | | 0 | | | 0 | | | | Minor Street | | Northbound | | Southbound | | | | | Movement | 7 | 8 | 9 | 10 | 11 | 12 | | | | L | Т | R | L | T | R | | | Volume (veh/h) | | | | | | 10 | | | Peak-Hour Factor, PHF | 0.92 | | | | | | | | | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | | Hourly Flow Rate, HFR (veh/h) | 0.92 | 0.92 | 0.92
0 | 0.92 | 0.92 | 0.92
10 | | | | | | | | | | | | (veh/h) | 0 | 0 | 0 | 0 | 0 | 10 | | | (veh/h)
Percent Heavy Vehicles | 0 | 0 | 0 | 0 | 0 | 10 | | | (veh/h) Percent Heavy Vehicles Percent Grade (%) | 0 | 0
0
0 | 0 | 0 | 0
0
0 | 10 | | | (veh/h) Percent Heavy Vehicles Percent Grade (%) Flared Approach | 0 | 0
0
0
N | 0 | 0 | 0
0
0
N | 10 | | | (veh/h) Percent Heavy Vehicles Percent Grade (%) Flared Approach Storage | 0 | 0
0
0
N | 0 | 0 | 0
0
0
N | 10 | | | Delay, Queue Length, and Level of Service | | | | | | | | | | | |---|-----------|-----------|---|------------|---|------------|------|------|--|--| | Approach | Eastbound | Westbound | | Northbound | | Southbound | | | | | | Movement | 1 | 4 | 7 | 8 | 9 | 10 | 11 | 12 | | | | Lane Configuration | L | | | | | | | R | | | | v (veh/h) | 29 | | | | | | | 10 | | | | C (m) (veh/h) | 870 | | | | | | | 470 | | | | v/c | 0.03 | | | | | | | 0.02 | | | | 95% queue length | 0.10 | | | | | | | 0.07 | | | | Control Delay (s/veh) | 9.3 | | | | | | | 12.8 | | | | LOS | Α | | | | | | | В | | | | Approach Delay (s/veh) | | | | | • | | 12.8 | , | | | | Approach LOS | | | | | | | В | | | | HCS+TM Version 5.21 Generated: 11/1/2008 4:25 PM | TWO-WAY STOP CONTROL SUMMARY | | | | | | | | | |---|---|---|---|--|--|--|--|--| | General Information Site Information | | | | | | | | | | Analyst
Agency/Co.
Date Performed
Analysis Time Period | J. Gormley
TPG Consulting, Inc.
10/30/2008
2020 Non Summer | Intersection Jurisdiction Analysis Year | Avila Beach Drive at US 101
SB
Caltrans
2020 | | | | | | | Project Description 06-10 | 052.1 Avila Circulation Element | | | | | | | | | East/West Street: Avila Be | each Drive | North/South Street: US 101 SB on ramp | | | | | | | | Intersection Orientation: East-West Study Period (hrs): 0.25 | | | | | | | | | | Vehicle Volumes and | Adjustments | | | | | | | | | | | | ` , | | | | |--------------------|-------------------------------|---|---------------|---------------|---------------------------|--| | Adjustments | | | | | | | | | Eastbound | | | Westbound | | | | 1 | 2 | 3 | 4 | 5 | 6 | | | L | T | R | L | T | R | | | | 20 | 543 | 2 | 381 | | | | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | | 0 | 21 | 590 | 2 | 414 | 0 | | | 0 | | | 2 | | | | | | , | Undi | ivided | , | | | | | | 0 | | | 0 | | | 0 | 1 | 1 | 1 | 1 | 0 | | | | T | R | L | T | | | | | 0 | | | 0 | | | | | Northbound | | Southbound | | | | | 7 | 8 | 9 | 10 | 11 | 12 | | | L | Т Т | R | L | T | R | | | | | | | | | | | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | | 0 | 0 | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | | | | 0 | , | | 0 | , | | | | N | | | N | | | | | 0 | | | 0 | | | | | | 0 | | | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | | | | | 1
L
0.92
0
0
0 | 1 2 T T 20 0.92 0.92 0.92 0 1 T T 0 T T T T T T T T T T T T T T T | Eastbound 1 | Eastbound 1 | Eastbound Westbound 1 | | | Delay, Queue Length, and Level of Service | | | | | | | | | | | |---|-----------|-----------|---|------------|---|------------|----|----|--|--| | Approach | Eastbound | Westbound | | Northbound | | Southbound | | | | | | Movement | 1 | 4 | 7 | 8 | 9 | 10 | 11 | 12 | | | | Lane Configuration | | L | | | | | | | | | | v (veh/h)
| | 2 | | | | | | | | | | C (m) (veh/h) | | 968 | | | | | | | | | | v/c | | 0.00 | | | | | | | | | | 95% queue length | | 0.01 | | | | | | | | | | Control Delay (s/veh) | | 8.7 | | | | | | | | | | LOS | | Α | | | | | | | | | | Approach Delay (s/veh) | | | | | • | | , | | | | | Approach LOS | | | | | | | | | | | HCS+TM Version 5.21 Generated: 11/1/2008 4:26 PM | TWO-WAY STOP CONTROL SUMMARY | | | | | | | | | |---|---|---|---|--|--|--|--|--| | General Information Site Information | | | | | | | | | | Analyst
Agency/Co.
Date Performed
Analysis Time Period | J. Gormley
TPG Consulting, Inc.
10/30/2008
2020 Summer | Intersection Jurisdiction Analysis Year | Avila Beach Drive at US 101
SB
Caltrans
2020 | | | | | | | Project Description 06-10 | 052.1 Avila Circulation Element | | | | | | | | | East/West Street: Avila Be | each Drive | North/South Street: U | North/South Street: US 101 SB on ramp | | | | | | | Intersection Orientation: East-West Study Period (hrs): 0.25 | | | | | | | | | | Vehicle Volumes and | | jotaaj : onoa (mo): on | | | | | | | | Vehicle Volumes and | Adjustments | | | | | | | |-------------------------------|-------------|------------|---------|------------|-----------|---------|--| | Major Street | | Eastbound | | | Westbound | | | | Movement | 1 | 2 | 3 | 4 | 5 | 6 | | | | L | T | R | L | T | R | | | Volume (veh/h) | | 27 | 754 | 3 | 525 | | | | Peak-Hour Factor, PHF | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | | Hourly Flow Rate, HFR (veh/h) | 0 | 29 | 819 | 3 | 570 | 0 | | | Percent Heavy Vehicles | 0 | | | 2 | | | | | Median Type | | , | Undi | ivided | | | | | RT Channelized | | | 0 | | | 0 | | | Lanes | 0 | 1 | 1 | 1 | 1 | 0 | | | Configuration | | T | R | L | T | | | | Upstream Signal | | 0 | | | 0 | | | | Minor Street | | Northbound | | Southbound | | | | | Movement | 7 | 8 | 9 | 10 | 11 | 12 | | | | L | Т Т | R | L | T | R | | | Volume (veh/h) | | | | | | | | | Peak-Hour Factor, PHF | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | | Hourly Flow Rate, HFR (veh/h) | 0 | 0 | 0 | 0 | 0 | 0 | | | Percent Heavy Vehicles | 0 | 0 | 0 | 0 | 0 | 0 | | | Percent Grade (%) | | 0 | , | | 0 | , | | | Flared Approach | | N | | | N | | | | Storage | | 0 | | | 0 | | | | RT Channelized | | | 0 | | | 0 | | | Lanes | 0 | 0 | 0 | 0 | 0 | 0 | | | Configuration | | | | | | | | | Delay, Queue Length, and Level of Service | | | | | | | | | | | |---|-----------|-----------|---|------------|---|------------|----|----|--|--| | Approach | Eastbound | Westbound | | Northbound | | Southbound | | | | | | Movement | 1 | 4 | 7 | 8 | 9 | 10 | 11 | 12 | | | | Lane Configuration | | L | | | | | | | | | | v (veh/h) | | 3 | | | | | | | | | | C (m) (veh/h) | | 790 | | | | | | | | | | v/c | | 0.00 | | | | | | | | | | 95% queue length | | 0.01 | | | | | | | | | | Control Delay (s/veh) | | 9.6 | | | | | | | | | | LOS | | Α | | | | | | | | | | Approach Delay (s/veh) | | | | | • | | , | , | | | | Approach LOS | | | | | | | | | | | HCS+TM Version 5.21 Generated: 11/1/2008 4:27 PM | | ٠ | → | • | • | ← | • | 4 | † | / | / | ļ | 4 | |--------------------------------------|------|--------------|-------|---------------|---------------|------|---------------|----------|--------------|----------|---------------|-------| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | † | 7 | ሻ | † | | ሻ | | 7 | | ર્ન | 7 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | Leading Detector (ft) | | 50 | 50 | 50 | 50 | | 50 | | 50 | 50 | 50 | 50 | | Trailing Detector (ft) | | 0 | 0 | 0 | 0 | | 0 | | 0 | 0 | 0 | 0 | | Turning Speed (mph) | 15 | | 9 | 15 | | 9 | 15 | | 9 | 15 | | 9 | | Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Frt | | | 0.850 | | | | | | 0.850 | | | 0.850 | | Flt Protected | | | | 0.950 | | | 0.950 | | | | 0.964 | | | Satd. Flow (prot) | 0 | 1863 | 1583 | 1770 | 1863 | 0 | 1770 | 0 | 1583 | 0 | 1796 | 1583 | | Flt Permitted | | | | 0.950 | | | 0.704 | | | | 0.964 | | | Satd. Flow (perm) | 0 | 1863 | 1583 | 1770 | 1863 | 0 | 1311 | 0 | 1583 | 0 | 1796 | 1583 | | Right Turn on Red | | | Yes | | | Yes | | | Yes | | | Yes | | Satd. Flow (RTOR) | | | 152 | | | | | | 74 | | | 126 | | Headway Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Link Speed (mph) | | 30 | | | 30 | | | 30 | | | 30 | | | Link Distance (ft) | | 134 | | | 217 | | | 248 | | | 254 | | | Travel Time (s) | _ | 3.0 | | | 4.9 | _ | | 5.6 | | | 5.8 | | | Volume (vph) | 0 | 439 | 140 | 51 | 330 | 0 | 140 | 0 | 68 | 56 | 18 | 116 | | Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | Adj. Flow (vph) | 0 | 477 | 152 | 55 | 359 | 0 | 152 | 0 | 74 | 61 | 20 | 126 | | Lane Group Flow (vph) | 0 | 477 | 152 | 55 | 359 | 0 | 152 | 0 | . 74 | 0 | 81 | 126 | | Turn Type | | | Perm | Prot | 0 | (| custom | (| custom | Perm | 0 | Perm | | Protected Phases | | 4 | 4 | 3 | 8 | | 0 | | 0 | 0 | 6 | • | | Permitted Phases | | | 4 | 0 | 0 | | 2 | | 2 | 6 | 0 | 6 | | Detector Phases | | 4 | 4 | 3 | 8 | | 2 | | 2 | 6 | 6 | 6 | | Minimum Initial (s) | | 4.0 | 4.0 | 4.0 | 4.0 | | 4.0 | | 4.0 | 4.0 | 4.0 | 4.0 | | Minimum Split (s) | 0.0 | 20.5
29.0 | 20.5 | 8.5 | 20.5 | 0.0 | 20.5 | 0.0 | 20.5
20.9 | 20.5 | 20.5 | 20.5 | | Total Split (s) | 0.0 | 48.3% | 29.0 | 10.1
16.8% | 39.1
65.2% | 0.0 | 20.9
34.8% | 0.0 | | 20.9 | 20.9
34.8% | 20.9 | | Total Split (%)
Maximum Green (s) | 0.0% | 24.5 | 24.5 | 5.6 | 34.6 | 0.0% | 16.4 | 0.0% | 16.4 | 16.4 | 16.4 | 16.4 | | Yellow Time (s) | | 3.5 | 3.5 | 3.5 | 3.5 | | 3.5 | | 3.5 | 3.5 | 3.5 | 3.5 | | All-Red Time (s) | | 1.0 | 1.0 | 1.0 | 1.0 | | 1.0 | | 1.0 | 1.0 | 1.0 | 1.0 | | Lead/Lag | | Lag | Lag | Lead | 1.0 | | 1.0 | | 1.0 | 1.0 | 1.0 | 1.0 | | Lead-Lag Optimize? | | Yes | Yes | Yes | | | | | | | | | | Vehicle Extension (s) | | 3.0 | 3.0 | 3.0 | 3.0 | | 3.0 | | 3.0 | 3.0 | 3.0 | 3.0 | | Recall Mode | | None | None | None | None | | Min | | Min | Min | Min | Min | | Walk Time (s) | | 5.0 | 5.0 | | 5.0 | | 5.0 | | 5.0 | 5.0 | 5.0 | 5.0 | | Flash Dont Walk (s) | | 11.0 | 11.0 | | 11.0 | | 11.0 | | 11.0 | 11.0 | 11.0 | 11.0 | | Pedestrian Calls (#/hr) | | 0 | 0 | | 0 | | 0 | | 0 | 0 | 0 | 0 | | Act Effct Green (s) | | 15.9 | 15.9 | 6.4 | 18.7 | | 10.9 | | 10.9 | _ | 10.9 | 10.9 | | Actuated g/C Ratio | | 0.41 | 0.41 | 0.14 | 0.48 | | 0.28 | | 0.28 | | 0.28 | 0.28 | | v/c Ratio | | 0.62 | 0.21 | 0.22 | 0.40 | | 0.42 | | 0.15 | | 0.16 | 0.24 | | Control Delay | | 14.7 | 3.2 | 24.2 | 7.5 | | 18.7 | | 5.9 | | 14.8 | 5.3 | | Queue Delay | | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | | 0.0 | | 0.0 | 0.0 | | Total Delay | | 14.7 | 3.2 | 24.2 | 7.5 | | 18.7 | | 5.9 | | 14.8 | 5.3 | | LOS | | В | Α | С | Α | | В | | Α | | В | Α | | Approach Delay | | 11.9 | | | 9.7 | | | | | | 9.0 | | | Approach LOS | | В | | | Α | | | | | | Α | | | | ۶ | → | • | • | • | • | 4 | † | / | > | ļ | 1 | |-------------------------|-----|----------|------|------|------|-----|------|----------|----------|-------------|------|------| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Queue Length 50th (ft) | | 51 | 0 | 8 | 35 | | 19 | | 0 | | 10 | 0 | | Queue Length 95th (ft) | | 216 | 28 | 48 | 100 | | 91 | | 25 | | 50 | 32 | | Internal Link Dist (ft) | | 54 | | | 137 | | | 168 | | | 174 | | | Turn Bay Length (ft) | | | | | | | | | | | | | | Base Capacity (vph) | | 1007 | 925 | 254 | 1221 | | 523 | | 677 | | 717 | 708 | | Starvation Cap Reductn | | 0 | 0 | 0 | 0 | | 0 | | 0 | | 0 | 0 | | Spillback Cap Reductn | | 0 | 0 | 0 | 0 | | 0 | | 0 | | 0 | 0 | | Storage Cap Reductn | | 0 | 0 | 0 | 0 | | 0 | | 0 | | 0 | 0 | | Reduced v/c Ratio | | 0.47 | 0.16 | 0.22 | 0.29 | | 0.29 | | 0.11 | | 0.11 | 0.18 | Area Type: Other Cycle Length: 60 Actuated Cycle Length: 38.9 Natural Cycle: 55 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.62 Intersection Signal Delay: 11.3 Intersection Capacity Utilization 50.9% Intersection LOS: B ICU Level of Service A Analysis Period (min) 15 Splits and Phases: 6: Avila Beach Drive & US 101 SB off ramp | | ۶ | → | • | • | ← | • | 4 | † | / | > | ↓ | 4 | |---|------|-------------|-------------|------------|----------|------|---------------|----------|-------------|---------------|-------------|---------------| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | ↑ | 7 | ሻ | ↑ | | ሻ | | 7 | | र्स | 7 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | Leading Detector (ft) | | 50 | 50 | 50 | 50 | | 50 | | 50 | 50 | 50 | 50 | | Trailing Detector (ft) | | 0 | 0 | 0 | 0 | | 0 | | 0 | 0 | 0 | 0 | | Turning Speed (mph) | 15 | | 9 | 15 | | 9 | 15 | | 9 | 15 | | 9 | | Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Frt | | | 0.850 | | | | | | 0.850 | | | 0.850 | | Flt Protected | _ | | | 0.950 | | _ | 0.950 | _ | | _ | 0.963 | | | Satd. Flow (prot) | 0 | 1863 | 1583 | 1770 | 1863 | 0 | 1770 | 0 | 1583 | 0 | 1794 | 1583 | | Flt Permitted | _ | | | 0.950 | | _ | 0.685 | _ | | _ | 0.963 | | | Satd. Flow (perm) |
0 | 1863 | 1583 | 1770 | 1863 | 0 | 1276 | 0 | 1583 | 0 | 1794 | 1583 | | Right Turn on Red | | | Yes | | | Yes | | | Yes | | | Yes | | Satd. Flow (RTOR) | | | 211 | | | | | | 103 | | | 174 | | Headway Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Link Speed (mph) | | 30 | | | 30 | | | 30 | | | 30 | | | Link Distance (ft) | | 134 | | | 217 | | | 248 | | | 254 | | | Travel Time (s) | _ | 3.0 | | | 4.9 | • | 404 | 5.6 | | | 5.8 | 400 | | Volume (vph) | 0 | 608 | 194 | 71 | 454 | 0 | 194 | 0 | 95 | 78 | 25 | 160 | | Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | Adj. Flow (vph) | 0 | 661 | 211 | 77 | 493 | 0 | 211 | 0 | 103 | 85 | 27 | 174 | | Lane Group Flow (vph) | 0 | 661 | 211 | 77 | 493 | 0 | 211 | 0 | 103 | 0 | 112 | 174 | | Turn Type | | | Perm | Prot | 0 | (| custom | (| custom | Perm | 0 | Perm | | Protected Phases | | 4 | 4 | 3 | 8 | | 0 | | 0 | ^ | 6 | 0 | | Permitted Phases | | 4 | 4 | 0 | 0 | | 2 | | 2 | 6 | 0 | 6 | | Detector Phases | | 4 | 4 | 3 | 8 | | 2 | | 2 | 6 | 6 | 6 | | Minimum Initial (s) | | 4.0 | 4.0 | 4.0 | 4.0 | | 4.0 | | 4.0 | 4.0 | 4.0 | 4.0 | | Minimum Split (s) | 0.0 | 20.5 | 20.5 | 8.5 | 20.5 | 0.0 | 20.5 | 0.0 | 20.5 | 20.5 | 20.5 | 20.5 | | Total Split (s) | 0.0 | 30.1 | 30.1 | 8.8 | 38.9 | 0.0 | 21.1 | 0.0 | 21.1 | 21.1 | 21.1 | 21.1
35.2% | | Total Split (%) | 0.0% | 50.2% | 25.6 | 14.7% | 34.4 | 0.0% | 35.2%
16.6 | 0.0% | | 35.2%
16.6 | | 16.6 | | Maximum Green (s) | | 25.6
3.5 | 25.6
3.5 | 4.3
3.5 | 34.4 | | 3.5 | | 16.6
3.5 | 3.5 | 16.6
3.5 | 3.5 | | Yellow Time (s)
All-Red Time (s) | | 1.0 | 1.0 | 1.0 | 1.0 | | 1.0 | | 1.0 | 1.0 | 1.0 | 1.0 | | Lead/Lag | | | Lag | Lead | 1.0 | | 1.0 | | 1.0 | 1.0 | 1.0 | 1.0 | | Lead-Lag Optimize? | | Lag
Yes | Yes | Yes | | | | | | | | | | Vehicle Extension (s) | | 3.0 | 3.0 | 3.0 | 3.0 | | 3.0 | | 3.0 | 3.0 | 3.0 | 3.0 | | Recall Mode | | None | None | None | None | | Min | | Min | Min | Min | Min | | Walk Time (s) | | 5.0 | 5.0 | None | 5.0 | | 5.0 | | 5.0 | 5.0 | 5.0 | 5.0 | | Flash Dont Walk (s) | | 11.0 | 11.0 | | 11.0 | | 11.0 | | 11.0 | 11.0 | 11.0 | 11.0 | | Pedestrian Calls (#/hr) | | 0 | 0 | | 0 | | 0 | | 0 | 0 | 0 | 0 | | Act Effct Green (s) | | 21.2 | 21.2 | 5.1 | 25.4 | | 12.9 | | 12.9 | U | 12.9 | 12.9 | | Actuated g/C Ratio | | 0.45 | 0.45 | 0.10 | 0.54 | | 0.27 | | 0.27 | | 0.27 | 0.27 | | v/c Ratio | | 0.79 | 0.26 | 0.44 | 0.49 | | 0.61 | | 0.20 | | 0.23 | 0.31 | | Control Delay | | 22.1 | 2.9 | 35.7 | 8.7 | | 25.9 | | 5.5 | | 17.3 | 5.2 | | Queue Delay | | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | | 0.0 | | 0.0 | 0.0 | | Total Delay | | 22.1 | 2.9 | 35.7 | 8.7 | | 25.9 | | 5.5 | | 17.3 | 5.2 | | LOS | | C | 2.5
A | 55.7
D | Α | | 20.5
C | | 3.5
A | | 17.3
B | A | | Approach Delay | | 17.4 | , , | | 12.4 | | 9 | | , , | | 9.9 | , , | | Approach LOS | | В | | | 12.4 | | | | | | Α | | | 1,6111111111111111111111111111111111111 | | | | | | | | | | | | | | | ၨ | → | \rightarrow | • | ← | • | • | † | / | > | ļ | 1 | |-------------------------|-----|----------|---------------|------|----------|-----|------|----------|------|-------------|------|------| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Queue Length 50th (ft) | | 184 | 0 | 26 | 79 | | 65 | | 0 | | 31 | 0 | | Queue Length 95th (ft) | | #377 | 31 | #77 | 149 | | 127 | | 29 | | 65 | 38 | | Internal Link Dist (ft) | | 54 | | | 137 | | | 168 | | | 174 | | | Turn Bay Length (ft) | | | | | | | | | | | | | | Base Capacity (vph) | | 955 | 914 | 175 | 1170 | | 444 | | 618 | | 624 | 665 | | Starvation Cap Reductn | | 0 | 0 | 0 | 0 | | 0 | | 0 | | 0 | 0 | | Spillback Cap Reductn | | 0 | 0 | 0 | 0 | | 0 | | 0 | | 0 | 0 | | Storage Cap Reductn | | 0 | 0 | 0 | 0 | | 0 | | 0 | | 0 | 0 | | Reduced v/c Ratio | | 0.69 | 0.23 | 0.44 | 0.42 | | 0.48 | | 0.17 | | 0.18 | 0.26 | Area Type: Other Cycle Length: 60 Actuated Cycle Length: 47.4 Natural Cycle: 60 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.79 Intersection Signal Delay: 15.2 Intersection Capacity Utilization 63.3% Intersection LOS: B ICU Level of Service B Analysis Period (min) 15 Queue shown is maximum after two cycles. Splits and Phases: 6: Avila Beach Drive & US 101 SB off ramp ^{# 95}th percentile volume exceeds capacity, queue may be longer. ## APPENDIX G ## **FUTURE CONDITIONS** ## PEAK HOUR SIGNAL WARRANTS ### Signal Warrants - Future (2020) | | | Approac | ch Lanes | Peak Hou | ır Volumes | | |---|--------------|--------------|--------------|----------------------------|---------------------------|---------------| | Intersections | Warrant Type | Major Street | Minor Street | Major Streets ¹ | Minor Street ² | Meets Warrant | | Avila Beach Drive at San Luis Street Non summer | Rural | 1 | 1 | 970 | 51 | NO | | Aviia Beach Drive at San Luis Street summer | Rural | 1 | 1 | 1046 | 67 | NO | | Avila Beach Drive at San Miguel Street Non summer | Rural | 1 | 1 | 920 | 78 | NO | | Aviid Beach Drive at San Miguel Street Summer | Rural | 1 | 1 | 1004 | 94 | Yes | | Avila Beach Drive at 1st Street Non summer | Rural | 1 | 1 | 899 | 44 | NO | | Aviid Bedcii Diive di 15t Street | Rural | 1 | 1 | 975 | 47 | NO | | SLB at US 101 NB ramps Non summer | Rural | 1 | 1 | 434 | 42 | NO | | SLB at 03 101 NB famps | Rural | 1 | 1 | 604 | 59 | NO | | SLB at US 101 SB ramps Non summer | Rural | 1 | 1 | 566 | 389 | Yes | | SLB at 03 101 3B famps summer | Rural | 1 | 1 | 785 | 539 | Yes | | SLB at Ontario Non summer | Rural | 1 | 1 | 648 | 221 | Yes | | SLB at Official of Summer | Rural | 1 | 1 | 899 | 305 | Yes | | Avila at US 101 NB ramps Non summer | Rural | 1 | 1 | 497 | 20 | No | | Aviia at 03 101 NB fairips | Rural | 1 | 1 | 687 | 27 | No | | Avila at US 101 SB on ramp | Rural | 1 | 1 | 946 | 0 | No | | Aviia at 03 101 3B 011 famp | Rural | 1 | 1 | 1309 | 0 | No | | Avila at US 101 SB off ramp/Shell Beach road Non summer | Rural | 1 | 1 | 960 | 208 | Yes | | Aviia at 03 101 3B oil famp/oneil beach toau summer | Rural | 1 | 1 | 1327 | 289 | Yes | Urban = California MUTCD, Figure 4C-3 Rural = California MUTCD, Figure 4C-4 Inlcudes both directions Includes higher volume direction only ## APPENDIX H ## MITIGATED FUTURE CONDITIONS ## **INTERSECTION LEVELS OF SERVICE** | | • | → | ← | • | \ | 4 | |-------------------------|---------|----------|----------|---------|----------|---------| | Lane Group | EBL | EBT | WBT | WBR | SBL | SBR | | Lane Configurations | ሻ | † | † | 7 | ሻ | 7 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost Time (s) | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | Leading Detector (ft) | 50 | 50 | 50 | 50 | 50 | 50 | | Trailing Detector (ft) | 0 | 0 | 0 | 0 | 0 | 0 | | Turning Speed (mph) | 15 | · · | • | 9 | 15 | 9 | | Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Frt | 1.00 | 1.00 | 1.00 | 0.850 | 1.00 | 0.850 | | Flt Protected | 0.950 | | | 0.000 | 0.950 | 0.000 | | Satd. Flow (prot) | 1770 | 1863 | 1863 | 1583 | 1770 | 1583 | | Flt Permitted | 0.950 | 1005 | 1003 | 1303 | 0.950 | 1303 | | | | 1062 | 1062 | 1502 | | 1500 | | Satd. Flow (perm) | 1770 | 1863 | 1863 | 1583 | 1770 | 1583 | | Right Turn on Red | | | | Yes | | Yes | | Satd. Flow (RTOR) | | | | 94 | | 56 | | Headway Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Link Speed (mph) | | 30 | 30 | | 30 | | | Link Distance (ft) | | 2816 | 3296 | | 1488 | | | Travel Time (s) | | 64.0 | 74.9 | | 33.8 | | | Volume (vph) | 256 | 530 | 228 | 85 | 63 | 50 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 284 | 589 | 253 | 94 | 70 | 56 | | Lane Group Flow (vph) | | 589 | 253 | 94 | 70 | 56 | | Turn Type | Prot | | | Perm | | custom | | Protected Phases | 7 | 4 | 8 | 1 01111 | ` | Jactorn | | Permitted Phases | • | 7 | J | 8 | 6 | 6 | | Detector Phases | 7 | 4 | 8 | 8 | 6 | 6 | | | | | | | | | | Minimum Initial (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | Minimum Split (s) | 9.3 | 21.3 | 21.3 | 21.3 | 21.3 | 21.3 | | Total Split (s) | 17.0 | 38.3 | 21.3 | 21.3 | 21.7 | 21.7 | | Total Split (%) | | 63.8% | | | | 36.2% | | Maximum Green (s) | 11.7 | 33.0 | 16.0 | 16.0 | 16.4 | 16.4 | | Yellow Time (s) | 4.3 | 4.3 | 4.3 | 4.3 | 4.3 | 4.3 | | All-Red Time (s) | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | Lead/Lag | Lead | | Lag | Lag | | | | Lead-Lag Optimize? | Yes | | Yes | Yes | | | | Vehicle Extension (s) | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | Recall Mode | None | None | None | None | Min | Min | | Walk Time (s) | . 10110 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | | Flash Dont Walk (s) | | 11.0 | 11.0 | 11.0 | 11.0 | 11.0 | | Pedestrian Calls (#/hr) | | 0 | 0 | 0 | 0 | 0 | | , , | 107 | | | | | | | Act Effet Green (s) | 12.7 | 26.6 | 14.5 | 14.5 | 10.0 | 10.0 | | Actuated g/C Ratio | 0.28 | 0.62 | 0.34 | 0.34 | 0.23 | 0.23 | | v/c Ratio | 0.57 | 0.51 | 0.40 | 0.16 | 0.17 | 0.14 | | Control Delay | 20.5 | 6.1 | 15.3 | 4.3 | 17.2 | 6.9 | | Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Delay | 20.5 | 6.1 | 15.3 | 4.3 | 17.2 | 6.9 | | LOS | С | Α | В | Α | В | Α | | Approach Delay | | 10.8 | 12.3 | | 12.6 | | | Approach LOS | | В | В | | В | | S:\Projects\06-1052.1\2020 LOS\Avila at SLB Dr Non Summer.sy7 J. Gormley | | ۶ | - | ← | * | > | 4 | |-------------------------|------|------|----------|------|-------------|------| | Lane Group | EBL | EBT | WBT | WBR | SBL | SBR | | Queue Length 50th (ft) | 61 | 57 | 54 | 0 | 16 | 0 | | Queue Length 95th (ft) | 145 | 127 | 110 | 24 | 45 | 22 | | Internal Link Dist (ft) | | 2736 | 3216 | | 1408 | | | Turn Bay Length (ft) | | | | | | | | Base Capacity (vph) | 534 | 1290 | 747 | 691 | 658 | 623 | | Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | | Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | | Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0
 | Reduced v/c Ratio | 0.53 | 0.46 | 0.34 | 0.14 | 0.11 | 0.09 | Area Type: Other Cycle Length: 60 Actuated Cycle Length: 43.1 Natural Cycle: 60 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.57 Intersection Signal Delay: 11.4 Intersection Capacity Utilization 39.7% Intersection LOS: B ICU Level of Service A Analysis Period (min) 15 Splits and Phases: 3: Avila Beach & San Luis Bay Drive | | ۶ | → | ← | • | \ | 1 | |-------------------------|-------|----------|----------|-------|----------|--------| | Lane Group | EBL | EBT | WBT | WBR | SBL | SBR | | Lane Configurations | ሻ | ^ | † | 7 | ሻ | 7 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost Time (s) | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | Leading Detector (ft) | 50 | 50 | 50 | 50 | 50 | 50 | | Trailing Detector (ft) | 0 | 0 | 0 | 0 | 0 | 0 | | Turning Speed (mph) | 15 | | | 9 | 15 | 9 | | Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Frt | | | | 0.850 | | 0.850 | | Flt Protected | 0.950 | | | | 0.950 | | | Satd. Flow (prot) | 1770 | 1863 | 1863 | 1583 | 1770 | 1583 | | Flt Permitted / | 0.950 | | | | 0.950 | | | Satd. Flow (perm) | 1770 | 1863 | 1863 | 1583 | 1770 | 1583 | | Right Turn on Red | | | .000 | Yes | | Yes | | Satd. Flow (RTOR) | | | | 118 | | 48 | | Headway Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Link Speed (mph) | 1.00 | 30 | 30 | 1.00 | 30 | 1.00 | | | | | | | 1488 | | | Link Distance (ft) | | 2816 | 3296 | | | | | Travel Time (s) | 0.45 | 64.0 | 74.9 | 400 | 33.8 | 40 | | Volume (vph) | 245 | 607 | 279 | 106 | 68 | 43 | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 272 | 674 | 310 | 118 | 76 | 48 | | Lane Group Flow (vph) | | 674 | 310 | 118 | 76 | 48 | | Turn Type | Prot | | | Perm | (| custom | | Protected Phases | 7 | 4 | 8 | | | | | Permitted Phases | | | | 8 | 6 | 6 | | Detector Phases | 7 | 4 | 8 | 8 | 6 | 6 | | Minimum Initial (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | Minimum Split (s) | 9.3 | 21.3 | 21.3 | 21.3 | 21.3 | 21.3 | | Total Split (s) | 17.0 | 38.3 | 21.3 | 21.3 | 21.7 | 21.7 | | Total Split (%) | | 63.8% | | | | 36.2% | | Maximum Green (s) | 11.7 | 33.0 | 16.0 | 16.0 | 16.4 | 16.4 | | Yellow Time (s) | 4.3 | 4.3 | 4.3 | 4.3 | 4.3 | 4.3 | | All-Red Time (s) | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | Lead/Lag | Lead | 1.0 | | | 1.0 | 1.0 | | | | | Lag | Lag | | | | Lead-Lag Optimize? | Yes | 2.0 | Yes | Yes | 2.0 | 2.0 | | Vehicle Extension (s) | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | Recall Mode | None | None | None | None | Min | Min | | Walk Time (s) | | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | | Flash Dont Walk (s) | | 11.0 | 11.0 | 11.0 | 11.0 | 11.0 | | Pedestrian Calls (#/hr) | | 0 | 0 | 0 | 0 | 0 | | Act Effct Green (s) | 12.6 | 27.8 | 15.7 | 15.7 | 10.2 | 10.2 | | Actuated g/C Ratio | 0.27 | 0.63 | 0.35 | 0.35 | 0.23 | 0.23 | | v/c Ratio | 0.57 | 0.58 | 0.47 | 0.19 | 0.19 | 0.12 | | Control Delay | 21.2 | 7.0 | 15.9 | 4.1 | 17.8 | 7.1 | | Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Delay | 21.2 | 7.0 | 15.9 | 4.1 | 17.8 | 7.1 | | LOS | C | Α | В | Α | В | Α | | Approach Delay | J | 11.1 | 12.7 | , , | 13.7 | , , | | Approach LOS | | В | В | | В | | | Approacti LOS | | ь | Б | | Ь | | S:\Projects\06-1052.1\2020 LOS\Avila at SLB Dr Summer.sy7 J. Gormley | Lane Group EBL EBT WBT WBR SBL SBR Queue Length 50th (ft) 62 71 69 0 18 0 Queue Length 95th (ft) 140 160 138 27 47 20 Internal Link Dist (ft) 2736 3216 1408 Turn Bay Length (ft) 518 1286 745 704 643 606 Starvation Cap Reductn 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 | | ၨ | - | ← | • | - | 1 | |---|-------------------------|------|------|----------|------|------|------| | Queue Length 95th (ft) 140 160 138 27 47 20 Internal Link Dist (ft) 2736 3216 1408 Turn Bay Length (ft) Base Capacity (vph) 518 1286 745 704 643 606 Starvation Cap Reductn 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 | Lane Group | EBL | EBT | WBT | WBR | SBL | SBR | | Internal Link Dist (ft) 2736 3216 1408 Turn Bay Length (ft) 518 1286 745 704 643 606 Starvation Cap Reductn 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 | Queue Length 50th (ft) | 62 | 71 | 69 | 0 | 18 | 0 | | Turn Bay Length (ft) Base Capacity (vph) 518 1286 745 704 643 606 Starvation Cap Reductn 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 | Queue Length 95th (ft) | 140 | 160 | 138 | 27 | 47 | 20 | | Base Capacity (vph) 518 1286 745 704 643 606 Starvation Cap Reductn 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 | Internal Link Dist (ft) | | 2736 | 3216 | | 1408 | | | Starvation Cap Reductn 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 | Turn Bay Length (ft) | | | | | | | | Spillback Cap Reductn 0 0 0 0 0 | Base Capacity (vph) | 518 | 1286 | 745 | 704 | 643 | 606 | | · | Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | | Storage Cap Reductn 0 0 0 0 0 | Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | | | Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | | Reduced v/c Ratio 0.53 0.52 0.42 0.17 0.12 0.08 | Reduced v/c Ratio | 0.53 | 0.52 | 0.42 | 0.17 | 0.12 | 0.08 | Area Type: Other Cycle Length: 60 Actuated Cycle Length: 44.4 Natural Cycle: 60 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.58 Intersection Signal Delay: 11.7 Intersection Capacity Utilization 42.4% Intersection LOS: B ICU Level of Service A Analysis Period (min) 15 Splits and Phases: 3: Avila Beach & San Luis Bay Drive | | → | • | • | • | • | ~ | |-------------------------|----------|------|--------|----------|-------|--------| | Lane Group | EBT | EBR | WBL | WBT | NBL | NBR | | Lane Configurations | 4î | | ሻ | 1 | ሻ | 7 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | Leading Detector (ft) | 50 | | 50 | 50 | 50 | 50 | | Trailing Detector (ft) | 0 | | 0 | 0 | 0 | 0 | | Turning Speed (mph) | Ū | 9 | 15 | ŭ | 15 | 9 | | Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Frt | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.850 | | Flt Protected | | | 0.950 | | | 0.000 | | Satd. Flow (prot) | 1863 | 0 | 1770 | 1863 | 1863 | 1583 | | , | 1003 | U | | 1003 | 1003 | 1363 | | Flt Permitted | 4000 | 0 | 0.950 | 4000 | 4000 | 4500 | | Satd. Flow (perm) | 1863 | 0 | 1770 | 1863 | 1863 | 1583 | | Right Turn on Red | | Yes | | | | Yes | | Satd. Flow (RTOR) | | | | | | 308 | | Headway Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Link Speed (mph) | 40 | | | 40 | 30 | | | Link Distance (ft) | 1160 | | | 97 | 738 | | | Travel Time (s) | 19.8 | | | 1.7 | 16.8 | | | Volume (vph) | 690 | 2 | 45 | 183 | 0 | 78 | | Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | Adj. Flow (vph) | 750 | 2 | 49 | 199 | 0 | 85 | | Lane Group Flow (vph) | | 0 | 49 | 199 | 0 | 85 | | Turn Type | 132 | U | Prot | 133 | U | Perm | | Protected Phases | 1 | | 3 | 8 | 2 | Feiiii | | | 4 | | 3 | 0 | 2 | 0 | | Permitted Phases | 4 | | _ | 0 | 0 | 2 | | Detector Phases | 4 | | 3 | 8 | 2 | 2 | | Minimum Initial (s) | 4.0 | | 4.0 | 4.0 | 4.0 | 4.0 | | Minimum Split (s) | 20.9 | | 8.5 | 20.9 | 20.5 | 20.5 | | Total Split (s) | 56.8 | 0.0 | 11.7 | 68.5 | 21.5 | 21.5 | | Total Split (%) | 63.1% | 0.0% | 13.0% | 76.1% | 23.9% | 23.9% | | Maximum Green (s) | 51.9 | | 7.2 | 63.6 | 17.0 | 17.0 | | Yellow Time (s) | 3.9 | | 3.5 | 3.9 | 3.5 | 3.5 | | All-Red Time (s) | 1.0 | | 1.0 | 1.0 | 1.0 | 1.0 | | Lead/Lag | Lead | | Lag | - | - | | | Lead-Lag Optimize? | Yes | | Yes | | | | | Vehicle Extension (s) | 3.0 | | 3.0 | 3.0 | 3.0 | 3.0 | | Recall Mode | C-Max | | | C-Max | Max | Max | | | 5.0 | | INOTIE | 5.0 | 5.0 | 5.0 | | Walk Time (s) | | | | | | | | Flash Dont Walk (s) | 11.0 | | | 11.0 | 11.0 | 11.0 | | Pedestrian Calls (#/hr) | 0 | | | 0 | 0 | 0 | | Act Effct Green (s) | 57.5 | | 7.3 | 64.5 | | 17.5 | | Actuated g/C Ratio | 0.64 | | 0.08 | 0.72 | | 0.19 | | v/c Ratio | 0.63 | | 0.34 | 0.15 | | 0.15 | | Control Delay | 9.3 | | 40.6 | 3.9 | | 0.6 | | Queue Delay | 0.0 | | 0.0 | 0.0 | | 0.0 | | Total Delay | 9.3 | | 40.6 | 3.9 | | 0.6 | | LOS | Α | | D | Α | | Α | | Approach Delay | 9.3 | | _ | 11.1 | | - • | | Approach LOS | Α | | | В | | | | Apploacii LOS | А | | | D | | | S:\Projects\06-1052.1\2020 LOS\non summer coordinated.sy7 J. Gormley Synchro 6 Report Page 1 | | → | \rightarrow | • | ← | 4 | _ | |-------------------------|----------|---------------|------|------|-----|------| | Lane Group | EBT | EBR | WBL | WBT | NBL | NBR | | Queue Length 50th (ft) | 273 | | 22 | 27 | | 0 | | Queue Length 95th (ft) | 111 | | 48 | 44 | | 0 | | Internal Link Dist (ft) | 1080 | | | 17 | 658 | | | Turn Bay Length (ft) | | | | | | | | Base Capacity (vph) | 1190 | | 151 | 1335 | | 556 | | Starvation Cap Reductn | 0 | | 0 | 0 | | 0 | | Spillback Cap Reductn | 0 | | 0 | 0 | | 0 | | Storage Cap Reductn | 0 | | 0 | 0 | | 0 | | Reduced v/c Ratio | 0.63 | | 0.32 | 0.15 | | 0.15 | | Intersection Summary | | | | | | | Area Type: Other Cycle Length: 90 Actuated Cycle Length: 90 Offset: 63 (70%), Referenced to phase 4:EBT and 8:WBT, Start of Green Natural Cycle: 60 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.63 Intersection Signal Delay: 9.0 Intersection Capacity Utilization 47.9% Intersection LOS: A ICU Level of Service A Analysis Period
(min) 15 Splits and Phases: 1: Avila Beach Drive & San Miguel Street | | - | • | • | ← | 4 | ~ | |-------------------------|-------|-------|-----------|----------|-------|-------| | Lane Group | EBT | EBR | WBL | WBT | NBL | NBR | | Lane Configurations | 4 | | * | † | ሻ | 7 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | Leading Detector (ft) | 50 | 4.0 | 50 | 50 | 50 | 50 | | Trailing Detector (ft) | 0 | | 0 | 0 | 0 | 0 | | • , , | U | 0 | | U | | | | Turning Speed (mph) | 4.00 | 9 | 15 | 4 00 | 15 | 9 | | Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Frt | | | | | | 0.850 | | Flt Protected | | | 0.950 | | | | | Satd. Flow (prot) | 1863 | 0 | 1770 | 1863 | 1863 | 1583 | | Flt Permitted | | | 0.950 | | | | | Satd. Flow (perm) | 1863 | 0 | 1770 | 1863 | 1863 | 1583 | | Right Turn on Red | | Yes | | | | Yes | | Satd. Flow (RTOR) | | | | | | 314 | | Headway Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Link Speed (mph) | 40 | | | 40 | 30 | | | Link Distance (ft) | 1160 | | | 97 | 738 | | | Travel Time (s) | 19.8 | | | 1.7 | 16.8 | | | Volume (vph) | 735 | 2 | 60 | 207 | 0 | 94 | | Peak Hour Factor | | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | | 0.92 | | | | | | | Adj. Flow (vph) | 799 | 2 | 65 | 225 | 0 | 102 | | Lane Group Flow (vph) | 801 | 0 | 65 | 225 | 0 | 102 | | Turn Type | | | Prot | _ | | Perm | | Protected Phases | 4 | | 3 | 8 | 2 | | | Permitted Phases | | | | | | 2 | | Detector Phases | 4 | | 3 | 8 | 2 | 2 | | Minimum Initial (s) | 4.0 | | 4.0 | 4.0 | 4.0 | 4.0 | | Minimum Split (s) | 20.9 | | 8.5 | 20.9 | 20.5 | 20.5 | | Total Split (s) | 64.3 | 0.0 | 14.2 | 78.5 | 21.5 | 21.5 | | Total Split (%) | 64.3% | | | | 21.5% | | | Maximum Green (s) | 59.4 | 0.070 | 9.7 | 73.6 | 17.0 | 17.0 | | Yellow Time (s) | 3.9 | | 3.5 | 3.9 | 3.5 | 3.5 | | All-Red Time (s) | 1.0 | | 1.0 | 1.0 | 1.0 | 1.0 | | ` , | | | | 1.0 | 1.0 | 1.0 | | Lead/Lag | Lead | | Lag | | | | | Lead-Lag Optimize? | Yes | | Yes | | | | | Vehicle Extension (s) | 3.0 | | 3.0 | 3.0 | 3.0 | 3.0 | | Recall Mode | C-Max | | None | C-Max | Max | Max | | Walk Time (s) | 5.0 | | | 5.0 | 5.0 | 5.0 | | Flash Dont Walk (s) | 11.0 | | | 11.0 | 11.0 | 11.0 | | Pedestrian Calls (#/hr) | 0 | | | 0 | 0 | 0 | | Act Effct Green (s) | 63.1 | | 9.4 | 74.5 | | 17.5 | | Actuated g/C Ratio | 0.63 | | 0.09 | 0.74 | | 0.18 | | v/c Ratio | 0.68 | | 0.39 | 0.16 | | 0.19 | | Control Delay | 11.1 | | 44.6 | 3.4 | | 0.8 | | Queue Delay | 0.0 | | 0.0 | 0.0 | | 0.0 | | Total Delay | 11.1 | | 44.6 | 3.4 | | 0.8 | | | | | 44.6
D | | | | | LOS | В | | D | A | | Α | | Approach Delay | 11.1 | | | 12.6 | | | | Approach LOS | В | | | В | | | S:\Projects\06-1052.1\2020 LOS\summer coordinated.sy7 J. Gormley TPG Consulting, Inc. | | → | \rightarrow | • | ← | 4 | / | |-------------------------|----------|---------------|------|----------|-----|------| | Lane Group | EBT | EBR | WBL | WBT | NBL | NBR | | Queue Length 50th (ft) | 329 | | 40 | 28 | | 0 | | Queue Length 95th (ft) | 143 | | 83 | 45 | | 0 | | Internal Link Dist (ft) | 1080 | | | 17 | 658 | | | Turn Bay Length (ft) | | | | | | | | Base Capacity (vph) | 1176 | | 181 | 1388 | | 536 | | Starvation Cap Reductn | 0 | | 0 | 0 | | 0 | | Spillback Cap Reductn | 0 | | 0 | 0 | | 0 | | Storage Cap Reductn | 0 | | 0 | 0 | | 0 | | Reduced v/c Ratio | 0.68 | | 0.36 | 0.16 | | 0.19 | | Internetion Comment | | | | | | | Area Type: Other Cycle Length: 100 Actuated Cycle Length: 100 Offset: 70 (70%), Referenced to phase 4:EBT and 8:WBT, Start of Green Natural Cycle: 65 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.68 Intersection Signal Delay: 10.6 Intersection LOS: B Intersection Capacity Utilization 51.3% ICU Level of Service A Analysis Period (min) 15 Splits and Phases: 1: Avila Beach Drive & San Miguel Street | | - | • | • | • | 1 | ~ | |-------------------------|-------|------|--------|-----------|-----------|-----------| | Lane Group | EBT | EBR | WBL | WBT | NBL | NBR | | Lane Configurations | 4 | | ሻ | † | * | 7 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | Leading Detector (ft) | 50 | | 50 | 50 | 50 | 50 | | Trailing Detector (ft) | 0 | | 0 | 0 | 0 | 0 | | Turning Speed (mph) | · | 9 | 15 | · · | 15 | 9 | | Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Frt | 0.993 | | 1.00 | | | 0.850 | | Flt Protected | 0.000 | | 0.950 | | 0.950 | 0.000 | | Satd. Flow (prot) | 1850 | 0 | 1770 | 1863 | 1770 | 1583 | | Flt Permitted | 1000 | O | 0.950 | 1000 | 0.950 | 1000 | | Satd. Flow (perm) | 1850 | 0 | 1770 | 1863 | 1770 | 1583 | | Right Turn on Red | 1000 | Yes | 1770 | 1005 | 1770 | Yes | | Satd. Flow (RTOR) | 6 | 163 | | | | 25 | | , | | 1 00 | 1.00 | 1.00 | 1.00 | 1.00 | | Headway Factor | 1.00 | 1.00 | 1.00 | | | 1.00 | | Link Speed (mph) | 40 | | | 40 | 30 | | | Link Distance (ft) | 1613 | | | 782 | 251 | | | Travel Time (s) | 27.5 | 40 | 00 | 13.3 | 5.7 | 00 | | Volume (vph) | 713 | 40 | 30 | 187 | 28 | 23 | | Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | Adj. Flow (vph) | 775 | 43 | 33 | 203 | 30 | 25 | | Lane Group Flow (vph) | 818 | 0 | 33 | 203 | 30 | 25 | | Turn Type | | | Prot | | | Perm | | Protected Phases | 4 | | 3 | 8 | 2 | | | Permitted Phases | | | | | | 2 | | Detector Phases | 4 | | 3 | 8 | 2 | 2 | | Minimum Initial (s) | 4.0 | | 4.0 | 4.0 | 4.0 | 4.0 | | Minimum Split (s) | 20.9 | | 8.9 | 20.5 | 20.5 | 20.5 | | Total Split (s) | 59.6 | 0.0 | 9.9 | 69.5 | 20.5 | 20.5 | | Total Split (%) | 66.2% | 0.0% | 11.0% | 77.2% | 22.8% | 22.8% | | Maximum Green (s) | 54.7 | | 5.0 | 65.0 | 16.0 | 16.0 | | Yellow Time (s) | 3.9 | | 3.9 | 3.5 | 3.5 | 3.5 | | All-Red Time (s) | 1.0 | | 1.0 | 1.0 | 1.0 | 1.0 | | Lead/Lag | Lead | | Lag | | | | | Lead-Lag Optimize? | Yes | | Yes | | | | | Vehicle Extension (s) | 3.0 | | 3.0 | 3.0 | 3.0 | 3.0 | | Recall Mode | C-Max | | | C-Max | Max | Max | | Walk Time (s) | 5.0 | | INOTIE | 5.0 | 5.0 | 5.0 | | | | | | | | 11.0 | | Flash Dont Walk (s) | 11.0 | | | 11.0 | 11.0 | | | Pedestrian Calls (#/hr) | 0 | | F 0 | 0
65 5 | 0
16 F | 0
16 5 | | Act Effet Green (s) | 59.6 | | 5.9 | 65.5 | 16.5 | 16.5 | | Actuated g/C Ratio | 0.66 | | 0.07 | 0.73 | 0.18 | 0.18 | | v/c Ratio | 0.67 | | 0.28 | 0.15 | 0.09 | 0.08 | | Control Delay | 3.3 | | 46.7 | 4.0 | 31.5 | 13.1 | | Queue Delay | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | | Total Delay | 3.3 | | 46.7 | 4.0 | 31.5 | 13.1 | | LOS | Α | | D | Α | С | В | | Approach Delay | 3.3 | | | 10.0 | 23.2 | | | Approach LOS | Α | | | В | С | | S:\Projects\06-1052.1\2020 LOS\non summer coordinated.sy7 J. Gormley Synchro 6 Report Page 3 | | - | • | • | ← | 1 | / | |-------------------------|------|-----|------|------|------|------| | Lane Group | EBT | EBR | WBL | WBT | NBL | NBR | | Queue Length 50th (ft) | 16 | | 18 | 29 | 14 | 0 | | Queue Length 95th (ft) | 20 | | 48 | 49 | 38 | 21 | | Internal Link Dist (ft) | 1533 | | | 702 | 171 | | | Turn Bay Length (ft) | | | | | | | | Base Capacity (vph) | 1226 | | 116 | 1356 | 325 | 311 | | Starvation Cap Reductn | 0 | | 0 | 0 | 0 | 0 | | Spillback Cap Reductn | 0 | | 0 | 0 | 0 | 0 | | Storage Cap Reductn | 0 | | 0 | 0 | 0 | 0 | | Reduced v/c Ratio | 0.67 | | 0.28 | 0.15 | 0.09 | 0.08 | | Intersection Summary | | | | | | | Area Type: Other Cycle Length: 90 Actuated Cycle Length: 90 Offset: 0 (0%), Referenced to phase 4:EBT and 8:WBT, Start of Green Natural Cycle: 65 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.67 Intersection Signal Delay: 5.7 Intersection Capacity Utilization 49.9% Intersection LOS: A ICU Level of Service A Analysis Period (min) 15 Splits and Phases: 4: Avila Beach Drive & San Luis Street | | → | • | • | ← | • | / | |-------------------------|----------|------|--------|----------|-------|---------| | Lane Group | EBT | EBR | WBL | WBT | NBL | NBR | | Lane Configurations | f | | | † | ሻ | 7 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | Leading Detector (ft) | 50 | | 50 | 50 | 50 | 50 | | Trailing Detector (ft) | 0 | | 0 | 0 | 0 | 0 | | Turning Speed (mph) | | 9 | 15 | · · | 15 | 9 | | Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Frt | 0.992 | 1.00 | 1.00 | 1.00 | 1.00 | 0.850 | | Flt Protected | 0.552 | | 0.950 | | 0.950 | 0.000 | | Satd. Flow (prot) | 1848 | 0 | 1770 | 1863 | 1770 | 1583 | | \• · | 1040 | U | 0.950 | 1003 | 0.950 | 1303 | | Flt Permitted | 4040 | 0 | | 4000 | | 4500 | | Satd. Flow (perm) | 1848 | 0 | 1770 | 1863 | 1770 | 1583 | | Right Turn on Red | _ | Yes | | | | Yes | | Satd. Flow (RTOR) | 6 | | | | | 26 | | Headway Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Link Speed (mph) | 40 | | | 40 | 30 | | | Link Distance (ft) | 1613 | | | 782 | 251 | | | Travel Time (s) | 27.5 | | | 13.3 | 5.7 | | | Volume (vph) | 765 | 48 | 31 | 202 | 43 | 24 | | Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | Adj. Flow (vph) | 832 | 52 | 34 | 220 | 47 | 26 | | Lane Group Flow (vph | | 0 | 34 | 220 | 47 | 26 | | Turn Type | , 001 | Ū | Prot | 220 | ., | Perm | | Protected Phases | 4 | | 3 | 8 | 2 | 1 01111 | | Permitted Phases | - | | 3 | 0 | 2 | 2 | | | 1 | | 2 | 0 | 2 | | | Detector Phases | 4 | | 3 | 8 | 2 | 2 | | Minimum Initial (s) | 4.0 | | 4.0 | 4.0 | 4.0 | 4.0 | | Minimum Split (s) | 20.9 | | 8.9 | 20.5 | 20.5 | 20.5 | | Total Split (s) | 69.3 | 0.0 | 10.2 | 79.5 | 20.5 | 20.5 | | Total Split (%) | 69.3% | 0.0% | | | 20.5% | 20.5% | | Maximum Green (s) | 64.4 | | 5.3 | 75.0 | 16.0 | 16.0 | | Yellow Time (s) | 3.9 | | 3.9 | 3.5 | 3.5 | 3.5 | | All-Red Time (s) | 1.0 | | 1.0 | 1.0 | 1.0 | 1.0 | | Lead/Lag | Lead | | Lag | | | | | Lead-Lag Optimize? | Yes | | Yes | | | | | Vehicle Extension (s) | 3.0 | | 3.0 | 3.0 | 3.0 | 3.0 | | Recall Mode | C-Max | | | C-Max | Max | Max | | Walk Time (s) | 5.0 | |
140116 | 5.0 | 5.0 | 5.0 | | ` , | 11.0 | | | 11.0 | 11.0 | 11.0 | | Flash Dont Walk (s) | | | | | | | | Pedestrian Calls (#/hr) | | | 0.0 | 75.5 | 0 | 0 | | Act Effct Green (s) | 69.4 | | 6.2 | 75.5 | 16.5 | 16.5 | | Actuated g/C Ratio | 0.69 | | 0.06 | 0.76 | 0.16 | 0.16 | | v/c Ratio | 0.69 | | 0.31 | 0.16 | 0.16 | 0.09 | | Control Delay | 3.5 | | 52.6 | 3.7 | 37.5 | 14.3 | | Queue Delay | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | | Total Delay | 3.5 | | 52.6 | 3.7 | 37.5 | 14.3 | | LOS | Α | | D | Α | D | В | | Approach Delay | 3.5 | | | 10.2 | 29.3 | | | Approach LOS | Α | | | В | С | | | | , \ | | | | | | S:\Projects\06-1052.1\2020 LOS\summer coordinated.sy7 J. Gormley TPG Consulting, Inc. 11/1/2008 | | → | \rightarrow | • | ← | | / | |-------------------------|----------|---------------|------|----------|------|------| | Lane Group | EBT | EBR | WBL | WBT | NBL | NBR | | Queue Length 50th (ft) | 20 | | 21 | 32 | 26 | 0 | | Queue Length 95th (ft) | 24 | | 53 | 51 | 59 | 23 | | Internal Link Dist (ft) | 1533 | | | 702 | 171 | | | Turn Bay Length (ft) | | | | | | | | Base Capacity (vph) | 1284 | | 110 | 1407 | 292 | 283 | | Starvation Cap Reductn | 0 | | 0 | 0 | 0 | 0 | | Spillback Cap Reductn | 0 | | 0 | 0 | 0 | 0 | | Storage Cap Reductn | 0 | | 0 | 0 | 0 | 0 | | Reduced v/c Ratio | 0.69 | | 0.31 | 0.16 | 0.16 | 0.09 | | Intono action Comments | | | | | | | Intersection Summary Area Type: Other Cycle Length: 100 Actuated Cycle Length: 100 Offset: 96 (96%), Referenced to phase 4:EBT and 8:WBT, Start of Green Natural Cycle: 75 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.69 Intersection Signal Delay: 6.4 Intersection Capacity Utilization 53.2% Intersection LOS: A ICU Level of Service A Analysis Period (min) 15 Splits and Phases: 4: Avila Beach Drive & San Luis Street | | → | • | • | ← | 4 | / | |-------------------------|----------|------|-------|----------|-------|-------| | Lane Group | EBT | EBR | WBL | WBT | NBL | NBR | | Lane Configurations | 4 | | ሻ | † | ሻ | 7 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | Leading Detector (ft) | 50 | | 50 | 50 | 50 | 50 | | Trailing Detector (ft) | 0 | | 0 | 0 | 0 | 0 | | Turning Speed (mph) | Ū | 9 | 15 | Ū | 15 | 9 | | Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Frt | 0.993 | 1.00 | 1.00 | 1.00 | 1.00 | 0.850 | | Flt Protected | 0.990 | | 0.950 | | 0.950 | 0.000 | | Satd. Flow (prot) | 1850 | 0 | 1770 | 1863 | 1770 | 1583 | | , | 1000 | U | | 1003 | | 1363 | | Flt Permitted | 4050 | 0 | 0.950 | 4000 | 0.950 | 4500 | | Satd. Flow (perm) | 1850 | 0 | 1770 | 1863 | 1770 | 1583 | | Right Turn on Red | • | Yes | | | | Yes | | Satd. Flow (RTOR) | 6 | | | | | 25 | | Headway Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Link Speed (mph) | 40 | | | 40 | 30 | | | Link Distance (ft) | 680 | | | 1160 | 740 | | | Travel Time (s) | 11.6 | | | 19.8 | 16.8 | | | Volume (vph) | 673 | 38 | 21 | 167 | 21 | 23 | | Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | Adj. Flow (vph) | 732 | 41 | 23 | 182 | 23 | 25 | | Lane Group Flow (vph) | 773 | 0 | 23 | 182 | 23 | 25 | | Turn Type | | | Prot | | | Perm | | Protected Phases | 4 | | 3 | 8 | 2 | | | Permitted Phases | • | | · · | • | _ | 2 | | Detector Phases | 4 | | 3 | 8 | 2 | 2 | | Minimum Initial (s) | 4.0 | | 4.0 | 4.0 | 4.0 | 4.0 | | Minimum Split (s) | 20.9 | | 8.9 | 20.9 | 20.5 | 20.5 | | , | 58.1 | 0.0 | 10.4 | 68.5 | 21.5 | 21.5 | | Total Split (s) | | 0.0 | | | | | | Total Split (%) | 64.6% | 0.0% | 11.6% | | | | | Maximum Green (s) | 53.2 | | 5.5 | 63.6 | 17.0 | 17.0 | | Yellow Time (s) | 3.9 | | 3.9 | 3.9 | 3.5 | 3.5 | | All-Red Time (s) | 1.0 | | 1.0 | 1.0 | 1.0 | 1.0 | | Lead/Lag | Lead | | Lag | | | | | Lead-Lag Optimize? | Yes | | Yes | | | | | Vehicle Extension (s) | 3.0 | | 3.0 | 3.0 | 3.0 | 3.0 | | Recall Mode | C-Max | | None | C-Max | Min | Min | | Walk Time (s) | 5.0 | | | 5.0 | 5.0 | 5.0 | | Flash Dont Walk (s) | 11.0 | | | 11.0 | 11.0 | 11.0 | | Pedestrian Calls (#/hr) | 0 | | | 0 | 0 | 0 | | Act Effct Green (s) | 70.6 | | 6.4 | 74.8 | 7.2 | 7.2 | | Actuated g/C Ratio | 0.78 | | 0.07 | 0.83 | 0.08 | 0.08 | | v/c Ratio | 0.78 | | 0.07 | 0.03 | 0.06 | 0.00 | | | 6.2 | | 38.6 | 0.12 | 40.7 | | | Control Delay | | | | | | 17.9 | | Queue Delay | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | | Total Delay | 6.2 | | 38.6 | 0.5 | 40.7 | 17.9 | | LOS | Α | | D | Α | D | В | | Approach Delay | 6.2 | | | 4.8 | 28.8 | | | Approach LOS | Α | | | Α | С | | S:\Projects\06-1052.1\2020 LOS\non summer coordinated.sy7 J. Gormley Synchro 6 Report Page 5 | | - | • | • | ← | 4 | ~ | |-------------------------|------|-----|------|------|------|------| | Lane Group | EBT | EBR | WBL | WBT | NBL | NBR | | Queue Length 50th (ft) | 82 | | 12 | 2 | 13 | 0 | | Queue Length 95th (ft) | 291 | | 36 | 6 | 36 | 24 | | Internal Link Dist (ft) | 600 | | | 1080 | 660 | | | Turn Bay Length (ft) | | | | | | | | Base Capacity (vph) | 1453 | | 126 | 1548 | 344 | 328 | | Starvation Cap Reductn | 0 | | 0 | 0 | 0 | 0 | | Spillback Cap Reductn | 0 | | 0 | 0 | 0 | 0 | | Storage Cap Reductn | 0 | | 0 | 0 | 0 | 0 | | Reduced v/c Ratio | 0.53 | | 0.18 | 0.12 | 0.07 | 0.08 | | | | | | | | | Area Type: Other Cycle Length: 90 Actuated Cycle Length: 90 Offset: 57 (63%), Referenced to phase 4:EBT and 8:WBT, Start of Green Natural Cycle: 65 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.53 Intersection Signal Delay: 7.0 Intersection Capacity Utilization 47.7% Intersection LOS: A ICU Level of Service A Analysis Period (min) 15 Splits and Phases: 8: Avila Beach Drive & First Street | | - | • | • | ← | 1 | _ | |-------------------------|----------|------|--------|----------|----------|----------| | Lane Group | EBT | EBR | WBL | WBT | NBL | NBR | | Lane Configurations | 1 | | ነ ነ | <u> </u> | ሻ | 7 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | Leading Detector (ft) | 50 | | 50 | 50 | 50 | 50 | | Trailing Detector (ft) | 0 | | 0 | 0 | 0 | 0 | | Turning Speed (mph) | _ | 9 | 15 | | 15 | 9 | | Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Frt | 0.993 | | | | | 0.850 | | Flt Protected | | | 0.950 | | 0.950 | | | Satd. Flow (prot) | 1850 | 0 | 1770 | 1863 | 1770 | 1583 | | Flt Permitted | | _ | 0.950 | | 0.950 | | | Satd. Flow (perm) | 1850 | 0 | 1770 | 1863 | 1770 | 1583 | | Right Turn on Red | 1000 | Yes | .,,, | 1000 | 1770 | Yes | | Satd. Flow (RTOR) | 5 | . 03 | | | | 25 | | Headway Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Link Speed (mph) | 40 | 1.00 | 1.00 | 40 | 30 | 1.00 | | , | | | | | | | | Link Distance (ft) | 680 | | | 1160 | 740 | | | Travel Time (s) | 11.6 | 40 | 00 | 19.8 | 16.8 | 00 | | Volume (vph) | 721 | 40 | 23 | 191 | 24 | 23 | | Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | Adj. Flow (vph) | 784 | 43 | 25 | 208 | 26 | 25 | | Lane Group Flow (vph) | 827 | 0 | 25 | 208 | 26 | _ 25 | | Turn Type | | | Prot | | | Perm | | Protected Phases | 4 | | 3 | 8 | 2 | | | Permitted Phases | | | | | | 2 | | Detector Phases | 4 | | 3 | 8 | 2 | 2 | | Minimum Initial (s) | 4.0 | | 4.0 | 4.0 | 4.0 | 4.0 | | Minimum Split (s) | 20.9 | | 8.9 | 20.9 | 20.5 | 20.5 | | Total Split (s) | 65.8 | 0.0 | 11.7 | 77.5 | 22.5 | 22.5 | | Total Split (%) | 65.8% | 0.0% | 11.7% | 77.5% | 22.5% | 22.5% | | Maximum Green (s) | 60.9 | | 6.8 | 72.6 | 18.0 | 18.0 | | Yellow Time (s) | 3.9 | | 3.9 | 3.9 | 3.5 | 3.5 | | All-Red Time (s) | 1.0 | | 1.0 | 1.0 | 1.0 | 1.0 | | Lead/Lag | Lag | | Lead | | | | | Lead-Lag Optimize? | Yes | | Yes | | | | | Vehicle Extension (s) | 3.0 | | 3.0 | 3.0 | 3.0 | 3.0 | | Recall Mode | C-Max | | | C-Max | Min | Min | | Walk Time (s) | 5.0 | | 140110 | 5.0 | 5.0 | 5.0 | | Flash Dont Walk (s) | 11.0 | | | 11.0 | 11.0 | 11.0 | | . , | | | | | | | | Pedestrian Calls (#/hr) | | | 7.0 | 0 | 0
7.5 | 0
7.5 | | Act Effct Green (s) | 79.3 | | 7.8 | 84.5 | 7.5 | 7.5 | | Actuated g/C Ratio | 0.79 | | 0.08 | 0.84 | 0.08 | 0.08 | | v/c Ratio | 0.56 | | 0.18 | 0.13 | 0.20 | 0.18 | | Control Delay | 7.1 | | 36.1 | 0.7 | 46.4 | 19.3 | | Queue Delay | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | | Total Delay | 7.1 | | 36.1 | 0.7 | 46.4 | 19.3 | | LOS | Α | | D | Α | D | В | | Approach Delay | 7.1 | | | 4.5 | 33.1 | | | Approach LOS | Α | | | Α | С | | S:\Projects\06-1052.1\2020 LOS\summer coordinated.sy7 J. Gormley TPG Consulting, Inc. 11/1/2008 | | → | \rightarrow | • | ← | 4 | _ | |-------------------------|----------|---------------|------|----------|------|------| | Lane Group | EBT | EBR | WBL | WBT | NBL | NBR | | Queue Length 50th (ft) | 96 | | 13 | 4 | 16 | 0 | | Queue Length 95th (ft) | 381 | | 33 | 7 | 42 | 25 | | Internal Link Dist (ft) | 600 | | | 1080 | 660 | | | Turn Bay Length (ft) | | | | | | | | Base Capacity (vph) | 1467 | | 147 | 1575 | 327 | 313 | | Starvation Cap Reductn | 0 | | 0 | 0 | 0 | 0 | | Spillback Cap Reductn | 0 | | 0 | 0 | 0 | 0 | | Storage Cap Reductn | 0 | | 0 | 0 | 0 | 0 | | Reduced v/c Ratio | 0.56 | | 0.17 | 0.13 | 0.08 | 0.08 | | Intono action Comments | | | | | | | Intersection Summary Area Type: Other Cycle Length: 100 Actuated Cycle Length: 100 Offset: 68 (68%), Referenced to phase 4:EBT and 8:WBT, Start of Green Natural Cycle: 70 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.56 Intersection Signal Delay: 7.8 Intersection Capacity Utilization 50.4% Intersection LOS: A ICU Level of Service A Analysis Period (min) 15 Splits and Phases: 8: Avila Beach Drive & First Street San Luis Bay Drive - Widening for Bike Lanes PREPARED BY: J. TUCKER DATE: 2/28/2007 #### PROJECT NO. 06-1052 | ITEM NAME
(DESCRIPTION) | UNIT | QTY | UNIT COST | TOTAL COST |
--|--|---|--|--| | US 101 to Blue Heron Dr (7392 LF - See *Notes Below) | | | | | | Demolition (Sawcut/Removal of AC and AC Dike) | LS | 1 | \$69,670.00 | \$69,670.00 | | Signing (Removal and Installation) | LS | 1 | \$13,000.00 | \$13,000.00 | | Striping and Pavement Marking (Installation) | LS | 1 | \$28,190.00 | \$28,190.00 | | Asphalt (3") | Ton | 1386 | \$100.00 | \$138,600.00 | | Aggregate Base (6") | Ton | 2679 | \$40.00 | \$107,160.00 | | Minimum Grading and Compaction | LS | 1 | \$123,200.00 | \$123,200.00 | | AC Berm (Install) | LF | 14784 | \$4.00 | \$59,136.00 | | Guard Rail (Removal and Installation) | LF | 739 | \$25.00 | \$18,475.00 | | | COST | | | \$557,431.00 | | Demolition (Sawcut/Removal of AC and AC Dike) Signing (Removal and Installation) Striping and Pavement Marking (Installation) Asphalt (3") Aggregate Base (6") Minimum Grading and Compaction AC Berm (Install) Guard Rail (Removal and Installation) | LS
LS
Ton
Ton
LS
LF
LF | 1
1
1
30
58
1
316
15 | \$2,978.00
\$2,000.00
\$3,400.00
\$100.00
\$40.00
\$2,633.30
\$4.00
\$25.00 | \$2,000.00
\$3,400.00
\$3,000.00
\$2,320.00
\$2,633.30
\$1,264.00
\$375.00 | | | COST | | | \$17,970.30 | | | SUBTO | OTAL CONS | STRUCTION COST | \$575,401.30 | | MOBILIZATION / MISC (3%) CLEARING AND GRUBBING (5%) CONTINGINCEY (20%) ENGINEERING (15%) | | | | \$17,262.04
\$28,770.07
\$115,080.26
\$86,310.20 | | | TOTAL | CONSTRU | JCTION COST | \$822,823.86 | #### *Notes: All estimates consider roadway widening equally shared on both sides of the roadway. All costs reflect current rates/estimates, future rates may differ. All roadways considered existing AC. All bike lanes considered Class II. All existing shoulder widths remain unmodified. All existing striping to remain protected in place. Impacts to hillsides or creeks not included. Improvements to existing structures not included. Drainage facility improvements not included. Right of way acquisition not included. Traffic control not included. Flashing beacon modifications not included. Utility relocation not Included. Earthwork not included. Avila Beach Drive - Widening for Bike Lanes PREPARED BY: J. TUCKER DATE: 2/28/2007 #### PROJECT NO. 06-1052 | ITEM NAME | UNIT | QTY | UNIT COST | TOTAL COST | |---|-----------|-----------|-------------------------|-----------------------------| | (DESCRIPTION) | | | | | | US 101 to San Luis Bay Dr - (6653 LF - See *Notes Page 2) | | | | | | Demolition (Sawcut/Removal of AC and AC Dike) | LS | 1 | \$59,713.00 | \$59,713.00 | | Signing (Removal and Installation) | LS | 1 | \$10,000.00 | \$10,000.00 | | Striping and Pavement Marking (Installation) | LS | 1 | \$23,197.00 | \$23,197.00 | | Asphalt (3") | Ton | 1248 | \$100.00 | \$124,800.00 | | Aggregate Base (6")Minimum Grading and Compaction | Ton
LS | 2412
1 | \$40.00
\$110,883.33 | \$96,480.00
\$110,883.33 | | AC Berm (Install) | LS
LF | 13306 | \$4.00 | \$53,224.00 | | Guard Rail (Removal and Installation) | LF | 665 | \$25.00 | \$16,625.00 | | | COST | | | \$494,922.33 | | San Luis Bay Dr. to San Luis St - (5861 LF - See *Notes Page 2) | | | | | | • | | | | | | Demolition (Sawcut/Removal of AC and AC Dike) Signing (Removal and Installation) | LS | 1 | \$54,936.00 | \$54,936.00 | | Signing (Removal and Installation) Striking and Revenuest Marking (Installation) | LS | 1
1 | \$7,000.00 | \$7,000.00 | | Striping and Pavement Marking (Installation) Asphalt (3") | LS
Ton | 1099 | \$19,202.00
\$100.00 | \$19,202.00
\$109,900.00 | | Aspriair (3) Aggregate Base (6") | Ton | 2125 | \$40.00 | \$85,000.00 | | Minimum Grading and Compaction | LS | 1 | \$97,683.33 | \$97,683.33 | | AC Berm (Install) | LF | 11722 | \$4.00 | \$46,888.00 | | Guard Rail (Removal and Installation) | LF | 5861 | \$25.00 | \$146,525.00 | | | COST | | | \$567,134.33 | | | | | | 4 001,10 1101 | | San Luis St to San Miguel St - (1083 LF - See *Notes Page 2) | | | | | | Demolition (Sawcut/Removal of AC and AC Dike) | LS | 1 | \$11,667.00 | \$11,667.00 | | Signing (Removal and Installation) | LS | 1 | \$6,250.00 | \$6,250.00 | | Striping and Pavement Marking (Installation) | LS | 1 | \$5,100.00 | \$5,100.00 | | Asphalt (3") | Ton | 203 | \$100.00 | \$20,300.00 | | Aggregate Base (6") | Ton | 393 | \$40.00 | \$15,720.00 | | Minimum Grading and Compaction | LS | 1 | \$18,050.00 | \$18,050.00 | | Guard Rail (Removal and Installation) | LF | 108 | \$25.00 | \$2,700.00 | | | COST | | | \$79,787.00 | | San Miguel St to Port San Luis - (6705 LF - See *Notes Page 2) | | | | | | Jan miguel of to Fort Sail Luis - (0703 Er - 366 NOtes Fage 2) | | | | | | Demolition (Sawcut/Removal of AC and AC Dike) | LS | 1 | \$35,016.00 | \$35,016.00 | | Signing (Removal and Installation) | LS | 1 | \$17,200.00 | \$17,200.00 | | Striping and Pavement Marking (Installation) | LS | 1 | \$21,753.00 | \$21,753.00 | | Asphalt (3") | Ton | 1257 | \$100.00 | \$125,700.00 | | Aggregate Base (6") Minimum Oradian and Communities | Ton | 2430 | \$40.00 | \$97,200.00 | | Minimum Grading and Compaction Output Brill (Paragraph and Installation) | LS | 1 | \$111,750.00 | \$111,750.00 | | Guard Rail (Removal and Installation) Garage to Code Code (Science It (Removal)) | LF | 190 | \$25.00 | \$4,750.00 | | Concrete Curb, Gutter & Sidewalk (Removal) Concrete Curb, Gutter & Sidewalk (Installation) | LF | 900 | \$5.00 | \$4,500.00 | | Concrete Curb, Gutter & Sidewalk (Installation) Reconstruction of Curb return and Ramp | LF
LS | 900
1 | \$12.00
\$3,500.00 | \$10,800.00
\$3,500.00 | | | | | | | | | COST | | | \$432,169.00 | Avila Beach Drive - Widening for Bike Lanes and Signalized Intersections PREPARED BY: J. TUCKER DATE: 2/28/2007 PROJECT NO. 06-1052 | ITEM NAME
(DESCRIPTION) | UNIT Q | TY UNIT COST | TOTAL COST | |----------------------------|----------|---------------------|----------------| | | | | | | | SUBTOTAL | L CONSTRUCTION COST | \$1,574,012.66 | | MOBILIZATION / MISC (3%) | | | \$47,220.38 | | CLEARING AND GRUBBING (5%) | | | \$78,700.63 | | CONTINGINCEY (20%) | | | \$314,802.53 | | ENGINEERING (15%) | | | \$236,101.90 | | | TOTAL CO | NSTRUCTION COST | \$2,250,838.10 | #### *Notes: All estimates consider roadway widening equally shared on both sides of the roadway. All costs reflect current rates/estimates, future rates may differ. All roadways considered existing AC. All bike lanes considered Class II. All existing shoulder widths remain unmodified. All existing striping to remain protected in place. Impacts to hillsides or creeks not included. Improvements to existing structures not included. Drainage facility improvements not included. Right of way acquisition not included. Traffic control not included. Flashing beacon modifications not included. Utility relocation not Included. Earthwork not included. Signalize Intersection PREPARED BY: J. TUCKER DATE: 2/28/2007 PROJECT NO. 06-1052 | LS | | | | | |---------------------------------|--|-------------|--|--| | LS | | | | | | | | 1 | \$175,000.00 | \$175,000.00 | | SUBTO | TAL CO | ONSTRU | JCTION COST | \$175,000.00 | | | | | | \$8,750.00
\$17,500.00
\$26,250.00 | | TOTAL | CONTI | NGENC | CY COST | \$52,500.00 | | TOTAL | .CONS | RUCTI | ON COST | \$227,500.00 | | | | | | | | LS | | 1 | \$185,000.00 | \$185,000.00 | | SUBTO | TAL CO | NSTRU | JCTION COST | \$185,000.00 | | | | | | \$9,250.00
\$18,500.00
\$27,750.00 | | TOTAL CONTINGENCY COST \$55,500 | | | | \$55,500.00 | | TOTAL | CONST | RUCTI | ON COST | \$240,500.00 | | | | | | | | LS | | 1 | \$200,000.00 | \$200,000.00 | | SUBTO | TAL CO | NSTRU | UCTION COST | \$200,000.00 | | | | | | \$10,000.00
\$20,000.00
\$30,000.00 | | TOTAL CONTINGENCY COST | | | \$60,000.00 | | | TOTAL | CONST | RUCTI | ON COST | \$260,000.00 | | TOTAL | CONS | FDLICTI | ON COST | \$728,000.00 | | | TOTAL LS SUBTO TOTAL TOTAL TOTAL TOTAL | TOTAL CONST | LS 1 SUBTOTAL CONSTRUCTION TOTAL CONSTRUCTION LS 1 SUBTOTAL CONSTRUCTION LS 1 SUBTOTAL CONSTRUCTION TOTAL CONSTRUCTION TOTAL CONSTRUCTION TOTAL CONSTRUCTION | TOTAL CONSTRUCTION COST TOTAL CONSTRUCTION COST TOTAL CONSTRUCTION COST LS 1 \$200,000.00 SUBTOTAL CONSTRUCTION COST | #### *Notes: All estimates consider roadway widening equally shared on both sides of the roadway. All costs reflect current rates/estimates, future rates may differ. All roadways considered existing AC. All bike lanes considered Class II. All existing shoulder widths remain unmodified. All existing striping to remain protected in place. Impacts to hillsides or
creeks not included. Improvements to existing structures not included. Prainage facility improvements not included. Drainage facility improvements not included. Right of way acquisition not included. Traffic control not included. Flashing beacon modifications not included. Utility relocation not Included. Earthwork not included. Pedestrian Walkway PREPARED BY: J. TUCKER DATE: 2/28/2007 #### PROJECT NO. 06-1052 | ITEM NAME
(DESCRIPTION) | UNIT | QTY | UNIT COST | TOTAL COST | |--|-------|-----------|---------------|--------------| | Pedestrian Walkway - Port San Luis To Unocal Pier - (5280 LF - See *Notes Below) | | | | | | Signing (Removal and Installation) | LS | 1 | \$6,250.00 | \$6,250.00 | | Aggregate Base (4") | Ton | 821 | \$40.00 | \$32,840.00 | | AC Dike (Removal) | LF | 5280 | \$2.50 | \$13,200.00 | | Concrete Curb, Gutter and Sidewalk (Installation) | LF | 5280 | \$12.00 | \$63,360.00 | | Minimum Grading and Compaction | LS | 1 | \$88,000.00 | \$88,000.00 | | Lighting and Electrical System Installation | LS | 1 | \$230,000.00 | \$230,000.00 | | | COST | | | \$433,650.00 | | | SUBTO | TAL CONS | TRUCTION COST | \$433,650.00 | | MOBILIZATION / MISC (3%) | | | | \$13,009.50 | | CLEARING AND GRUBBING (5%) | | | | \$21,682.50 | | CONTINGINCEY (20%) | | | | \$86,730.00 | | ENGINEERING (15%) | | | | \$65,047.50 | | | TOTAL | . CONSTRU | CTION COST | \$620,119.50 | #### *Notes: All estimates consider roadway widening equally shared on both sides of the roadway. All costs reflect current rates/estimates, future rates may differ. All roadways considered existing AC. All bike lanes considered Class II. All existing shoulder widths remain unmodified. All existing striping to remain protected in place. Impacts to hillsides or creeks not included. $Improvements\ to\ existing\ structures\ not\ included.$ Drainage facility improvements not included. Right of way acquisition not included. Traffic control not included. Flashing beacon modifications not included. Utility relocation not Included. Earthwork not included. 100 Stall Intercept Parking Lot PREPARED BY: J. TUCKER DATE: 2/28/2007 #### PROJECT NO. 06-1052 | ITEM NAME
(DESCRIPTION) | UNIT | QTY | UNIT COST | TOTAL COST | |---|-------|----------|---------------|----------------| | 100 Stall Intercept Parking Lot - (575' x 65' - See *Notes Below) | | | | | | Signing (Installation) | LS | 1 | \$5,000.00 | \$5,000.00 | | Striping and Pavement Marking (Installation) | LS | 1 | \$30,000.00 | \$30,000.00 | | Asphalt (6") | Ton | 1359 | \$300.00 | \$407,700.00 | | Aggregate Base (10") | Ton | 2180 | \$60.00 | \$130,800.00 | | Minimum Grading and Compaction | LS | 1 | \$65,000.00 | \$65,000.00 | | Concrete Curb & Gutter (Installation) | LF | 1280 | \$7.00 | \$8,960.00 | | Driveway Installation | EA | 2 | \$1,000.00 | \$2,000.00 | | Lighting and Electrical System Installation | LS | 1 | \$115,000.00 | \$115,000.00 | | | COST | | | \$764,460.00 | | | SUBTO | TAL CONS | TRUCTION COST | \$764,460.00 | | MOBILIZATION / MISC (3%) | | | | \$22,933.80 | | CLEARING AND GRUBBING (5%) | | | | \$38,223.00 | | CONTINGINCEY (20%) | | | | \$152,892.00 | | ENGINEERING (15%) | | | | \$114,669.00 | | | TOTAL | CONSTRU | CTION COST | \$1,093,177.80 | #### *Notes: All estimates consider roadway widening equally shared on both sides of the roadway. All costs reflect current rates/estimates, future rates may differ. All roadways considered existing AC. All bike lanes considered Class II. All existing shoulder widths remain unmodified. All existing striping to remain protected in place. Impacts to hillsides or creeks not included. Improvements to existing structures not included. Drainage facility improvements not included. Right of way acquisition not included. Traffic control not included. Flashing beacon modifications not included. Utility relocation not Included. Earthwork not included. Ontario Road - Widening for Bike Lanes PREPARED BY: J. TUCKER DATE: 2/28/2007 #### PROJECT NO. 06-1052 | ITEM NAME
(DESCRIPTION) | UNIT | QTY | UNIT COST | TOTAL COST | |---|-------|-----------|-----------------|--------------| | San Luis Bay Dr to Bob Jones Bikeway - (3960 LF - See *Notes Below) | | | | | | Demolition (Sawcut/Removal of AC and AC Dike) | LS | 1 | \$42,312.00 | \$42,312.00 | | Signing (Removal and Installation) | LS | 1 | \$14,000.00 | \$14,000.00 | | Striping and Pavement Marking (Installation) | LS | 1 | \$16,506.00 | \$16,506.00 | | Asphalt (3") | Ton | 743 | \$100.00 | \$74,300.0 | | Aggregate Base (6") | Ton | 1435 | \$40.00 | \$57,400.00 | | Minimum Grading and Compaction | LS | 1 | \$66,000.00 | \$66,000.00 | | AC Berm (Install) | LF | 7920 | \$4.00 | \$31,680.00 | | Guard Rail (Removal and Installation) | LF | 396 | \$25.00 | \$9,900.00 | | | COST | | | \$312,098.00 | | Bob Jones Bikeway to Avila Beach Dr - (1584 LF - See *Notes Below) | | | | | | Demolition (Sawcut/Removal of AC and AC Dike) | LS | 1 | \$17,500.00 | \$17,500.00 | | Signing (Removal and Installation) | LS | 1 | \$5,000.00 | | | Striping and Pavement Marking (Installation) | LS | 1 | \$5,677.00 | | | Asphalt (3") | Ton | 297 | \$100.00 | | | Aggregate Base (6") | Ton | 574 | \$40.00 | | | Minimum Grading and Compaction | LS | 1 | \$26,400.00 | | | AC Berm (Install) | LF | 7920 | \$4.00 | . , | | Guard Rail (Removal and Installation) | LF | 158 | \$25.00 | \$3,950.00 | | | COST | | | \$142,867.00 | | | SUBTO | TAL CONS | STRUCTION COST | \$454,965.00 | | | 30010 | JIAL OUNC | 2110011011 0001 | ψτυτ,υυυ.υι | | MOBILIZATION / MISC (3%) | | | | \$13,648.9 | | CLEARING AND GRUBBING (5%) | | | | \$22,748.2 | | CONTINGINCEY (20%) | | | | \$90,993.0 | | ENGINEERING (15%) | | | | \$68,244.75 | | | TOTAL | CONSTRU | JCTION COST | \$650,599.95 | #### *Notes: All estimates consider roadway widening equally shared on both sides of the roadway. All costs reflect current rates/estimates, future rates may differ. All roadways considered existing AC. All bike lanes considered Class II. All existing shoulder widths remain unmodified. All existing striping to remain protected in place. Impacts to hillsides or creeks not included. Improvements to existing structures not included. Drainage facility improvements not included. Right of way acquisition not included. Traffic control not included. Flashing beacon modifications not included. Utility relocation not Included. Earthwork not included.